
1

Parsing with Shoebox

David Bevan

1. Introduction

This document describes how to structure your lexical database for parsing with
Shoebox for Windows and Macintosh. In Shoebox 2 for MS-DOS, there were two
methods of providing parsing information: a parsing database and the conjoined
affix parser. With Shoebox 5, neither of these are necessary because the program
has a morphological parser which can break off any number of affixes and handle
morphophonemic changes to affixes and roots. If you desire, all the necessary
information for parsing can be kept in your lexical database.

This document uses English examples with the standard Shoebox interlinear settings
and Multi-Dictionary Formatter (MDF) data field markers.

2. Simple Parsing: Roots and Affixes

With Shoebox, it is necessary in the lexicon to specify whether a morpheme is a
root, prefix, suffix or infix by the correct use of morpheme break characters
(normally hyphens) in the lexeme field. A prefix must have a final hyphen; a suffix
must have an initial hyphen; a root must not have a hyphen; an infix must have an
initial and a final hyphen. Note that this means that you cannot have hyphens on
bound roots in the lexeme field. However, you can enter roots with hyphens in the
\lc Lexical Citation data field.

This is all that’s necessary for simple parsing. For example, the lexical entries

\lx un- \lx success \lx -ful
\ps neg \ps n \ps nadjzr
\ge OPPOS \ge achievement \ge ADJZR

will cause unsuccessful to be interlinearized correctly:
unsuccessful
un- success -ful
OPPOS- achievement -ADJZR
neg- n -nadjzr

Forms with hyphens between the morphemes are also parsed correctly. For example,
with

\lx non- \lx read \lx -er
\ps neg \ps v \ps vnomzr
\ge not \ge look_at_book \ge AGENT

in the lexicon, non-reader is parsed as follows:

non-reader
non- read -er
not- look_at_book -AGENT
neg- v -vnomzr

Note how great an improvement this is over Shoebox 2 where every word had
to be parsed individually, or every combination of affixes listed in the
conjoined affix parser.

2.1 Infixes

An infix is a morpheme embedded within a root or an affix. Some people use the
term infix to refer to an affix which occurs only between a root and another affix;
but for Shoebox that is just another prefix or suffix, not an infix.

English doesn’t have infixes, but if

\lx -int-
\ps intens
\ge INTENS

was an English intensive infix, then sintuccessful would be interlinearized
‘correctly’ as

sintuccessful
success -int- -ful
achievement -INTENS- -ADJZR
n -intens- -nadjzr

Parsing with Shoebox

2

In the parse, infixes appear before or after the root or stem in which they are found.
(Shoebox has an option which lets you choose.) These examples display the infix
after. Infixes can be found anywhere in the word, so successfintul would be
interlinearized as follows:

successfintul
success -ful -int-
achievement -ADJZR -INTENS-
n -nadjzr -intens-

2.2 Compound Roots

Words with compound roots will be parsed correctly if both roots are in the lexicon.
For example, the following lexical entries

\lx black \lx bird \lx -s
\ps adj \ps n \ps ninfl
\ge dark \ge flying_creature \ge PL

will cause blackbirds to be interlinearized as follows:

blackbirds
black - bird -s
dark - flying_creature -PL
adj - n -ninfl

Compounds with hyphens, such as sea-green and mother-in-law parse correctly.
Shoebox has an option to allow or disallow compound roots.

3. Alternate Forms

If a morpheme has more than one surface form, this can be specified with an
alternate form (\a) field:

\lx a \lx telephone
\a an \a phone
\ps art \ps n
\ge INDEF \ge transceiver

The parsed form is taken from the \lx field:

an enormous phone
a enormous telephone
INDEF very_big transceiver
art adj n

Here are lexical entries for some more morphemes with alternate forms:

\lx in- \lx -s \lx not
\a im- \a -es \a -n’t
\a il- \ps ninfl \ps neg
\a ir- \ge PL \ge NEG
\ps neg
\ge OPPOS

and some example interlinear text:

impossible foxes faces haven't
in- possible fox -s face -s have -not
OPPOS- feasible animal_sp. -PL head -PL own NEG
neg- adj n -ninfl n -ninfl v neg

Note that foxes and faces are parsed correctly due to the presence of fox and face
in the lexicon (but not foxe and fac).

Note also that haven’t has been analyzed here as a compound.

Alternative forms can have a different (affix) type from the lexeme (e.g. you can
have a suffix as an alternative form of a root or prefix).

4. Underlying Forms

If you require that a variant form has its own lexical entry, you can use an
underlying form (\u) field. Here’s an alternative way of treating phone. The parsed
output is the same as above.

\lx phone \lx telephone
\u telephone \ps n

\ge transceiver

Parsing with Shoebox

3

You can enter the morphemic breakdown of a lexical entry in an underlying form
field. (This is like the use of the parsing database in Shoebox 2.) For example, here
is one way to handle the suppletive verb form went.

\lx went \lx go \lx -ed
\u go -ed \ps v \ps vinfl

\ge proceed \ge PAST

Here’s how it parses:

he went
he go -ed
3SM proceed -PAST
pron v -vinfl

Rather than having a separate lexical entry for each irregular form, these forms may
be included in the main entry by using an alternate form field and an underlying
form field. Here’s another way of handling went along with some other irregular
verb forms:

\lx go \lx find \lx hit
\a went \a found \u hit
\u go -ed \u find -ed \u hit -ed
\ps v \ps v \ps v
\ge proceed \ge locate \ge strike

An underlying form (\u) field is associated with whichever \lx or \a field precedes
it. (If no \u field follows a \lx or \a field, the contents of the \lx field are used as the
underlying form.)

Note: When you want to identify portions of underlying forms that are to be parsed
as whole units, you must leave spaces between the morphemes in an underlying
form field to distinguish roots, prefixes and suffixes. But if you want the operation
to return a portion to the parser to add to the main block being processed, no spaces
are allowed.

Note that hit is ambiguous and so two underlying forms are given to make Shoebox
display an Ambiguity Selection dialog box.

Here’s how the verbs parse (with the past tense form chosen for hit).

went found hit
go -ed find -ed hit -ed
proceed -PAST locate -PAST strike -PAST
v -vinfl v -vinfl v -vinfl

Note that it doesn’t matter to Shoebox whether a form that needs parsing
information is included in a main lexical entry as an alternate form or has its
own lexical entry (perhaps in a separate database). The choice is yours.

Sometimes, it may be necessary to use an underlying form field for affix sequences
— rather like using the conjoined affix parser in Shoebox 2. The affix -ability is an
example in English:

\lx -able \lx -ity \lx -ability
\ps vadjzr \ps anomzr \u -able -ity
\ge ABIL \ge NOMZR

Here’s how readability is parsed:

readability
read -able -ity
look_at_book -ABIL -NOMZR
v -vadjzr -anomzr

Finally, here are some examples of underlying forms of compounds:

\lx have \lx brunch
\a I’ve \u breakfast lunch
\u I have
\ps v
\ge own

which parse like this:

I've brunch
I have breakfast lunch
1S own morning_meal noon_meal
pron v n n

Parsing with Shoebox

4

4.1 Forced Values — Resolving Ambiguity

Where a morpheme has more than one meaning, it is sometimes helpful in
underlying forms to specify which one is required so that Shoebox doesn’t display
an Ambiguity Selection dialog box. For example, two English suffixes have the form
-s, so in the underlying form of the irregular form men, it is worthwhile specifying
which one is required. This is done by putting the gloss in curly braces after the
morpheme:

\lx -s \lx -s \lx man
\a -es \a -es \a men
\ps ninfl \ps vinfl \u man -s{PL}
\ge PL \ge 3S \ps n

\ge male_person

Then men parses as follows without displaying an Ambiguity Selection dialog box.

men
man -s
male_person -PL
n -ninfl

For forced glosses to work in this way it is necessary that in the parsed output the
gloss line appears immediately after the parsed (morpheme breakdown) line. If the
part of speech line was above the gloss line, then the forced value would have to be
specified as -s{ninfl} or -s{ninfl}{PL}. Note that multiple forced values are possible
in the order of the interlinear lines.

Here’s another example, with the ambiguity on the root:

\lx bear \lx bear
\ps n \a bore
\ge animal_sp. \u bear{carry} -ed

\ps v
\ge carry

With these lexical entries, bore parses like this without displaying an Ambiguity
Selection dialog box. (Of course, bore is itself ambiguous, also meaning ‘drill a
hole’.)

bore
bear -ed
carry -PAST
v -vinfl

Forced glosses on prefixes must be placed after the hyphen, not before.

4.2 Direct Parsing — Preventing Incorrect Parses

With the following lexical entries,

\lx hop \lx hope \lx -s
\ps v ; n \ps v \a -es
\ge jump \ge expect \ps vinfl

\ge 3S

the word hopes will be parsed incorrectly:

 hopes
*hop -s
*jump -3S
 v -vinfl

In parsing, Shoebox resolves much of the possible ambiguity by choosing the
parse which cuts off the longest affix. This prevents the user being presented
with an Ambiguity Selection dialog box with many possible parses — mostly
incorrect — to choose from.

In the case of hopes, this means that -es is cut off.

In situations like this, to get the correct parse it is necessary add parsing information
to over-ride the incorrect analysis (an alternative approach is outlined later):

\lx hope
\a hopes
\u hope -s{3S}
\ps v
\ge expect

Parsing with Shoebox

5

This forces hopes to be parsed like this:

hopes
hope -s
expect -3S
v -vinfl

Here’s another example involving prefixes. To prevent the false parse of the word
demisting in which the prefix demi- gets cut off,

 demisting
*demi- sting
*half- hurt
*num- n

it is necessary to provide an analysis of demist:

\lx demist \lx mist
\u de- mist{fog}{v} \ps n ; v

\ge fog

Then the word is correctly parsed:

demisting
de- mist -ing
REVERS- fog -PTC
neg- v -vinfl

In some cases there is more than one correct parse of a word (or part of word) with
morpheme breaks in different places. In this case, it is necessary to provide parsing
information for both so that the ambiguity is recognized. Here’s an example:

\lx do \lx doe
\a does \a does
\u do -s{3S} \u doe -s{PL}
\ps v \ps n
\ge perform \ge female_deer

Shoebox will display an Ambiguity Selection dialog box for you to choose which
analysis you want:

does does
do -s doe -s
perform -3S female_deer -PL
v -vinfl n -ninfl

5. Morphophonemics

Simple morphophonemic alternations can be expressed by using alternate forms and
underlying forms. Here is how the orthographic rules

y → i / __ +ed or y + ed → ied
y → ie / __ +s or y + s → ies

are expressed:

\lx -ed \x -s
\a -d \a -es
\a -ied \a -ies
\u y+ed \u y+s
\ps vinfl \ps vinfl
\ge PAST \ge 3S

The way this works is that the alternate form field contains the surface form
including the whole of the suffix. The underlying form field contains the underlying
form of the part of the root (or preceding suffix) that is modified followed by + and
the underlying form of the suffix.

Here’s how forms of the verbs try and tie are parsed:

tried tied tries ties
try -ed tie -ed try -s tie -s
attempt -PAST bind -PAST attempt -3S bind -3S
v -vinfl v -vinfl v -vinfl v -vinfl

Parsing with Shoebox

6

Here’s another example, for the doubling of consonants before the -ed suffix:

\lx -ed
\a -d
\a -pped
\u p+ed
\ps vinfl
\ge PAST

and here’s how hopped parses:

hopped
hop -ed
jump -PAST
v -vinfl

At present, there is no way of specifying general rules, so this parsing information
would have to be provided for each suffix and each consonant that gets doubled.

The approach is equivalent for prefixes. There are very few processes involved in
English prefixes, but if we suppose that the rule

sp → p/ dis+ __ or dis + sp → disp

as exemplified by the word dispirited was productive, then we would specify it like
this:

\lx dis-
\a disp-
\u dis+sp
\ps neg
\ge OPPOS

and dispirited would be parsed as follows:

dispirited
dis- spirit -ed
OPPOS- vitality -possessing
neg- n -nadjzr

5.1 Context Sensitivity — Preventing Incorrect Parses

Even when there is no morphophonemic process involved, it may still be beneficial
to use the morphophonemic notation if an affix’s occurrence is phonologically
conditioned in order to reduce the number of false parses.

For example, with the allomorphs of the prefix in- specified as follows,

\lx in-
\a im-
\a il-
\a ir-
\ps neg
\ge OPPOS

words like image, imam, iris and iron will be parsed incorrectly if they don’t
already have their own lexical entry. For example:

 iron
*in- on
*OPPOS- upon
*neg- prep

If we use the morphophonemic notation to express the restriction on their
occurrence as follows:

\lx in-
\a imb-
\u in+b
\a imm-
\u in+m
\a imp-
\u in+p
\a ill-
\u in+l
\a irr-
\u in+r
\ps neg
\ge OPPOS

then the false parses won’t occur.

Parsing with Shoebox

7

5.2 Ensuring Ambiguity is Recognized

The morphophonemic notation can also be used to achieve the opposite effect of
increasing the number of parses. For example, the following specifies that there are
two possible parses of word-final -es. Either it is simply -s (as in pushes) or (the
additional information) it is e+s (with roots with final -e, as in likes):

\lx -s
\a -es
\a -es
\u e+s
\ps vinfl
\ge 3S

In cases (such as hopes) where roots exist both with and without a final -e (hope
and hop), as far as Shoebox is concerned the parse is ambiguous, but without
specifying the above (apparently redundant) information Shoebox will always
choose the one which cuts of the longer affix. Adding the extra parsing choice
makes Shoebox display the Ambiguity Selection dialog box offering a choice
(between hop -s and hope -s).

The disadvantage of this approach is that the (false) ambiguity is always displayed
unless for each form you add specific parsing information.

On the other hand, for forms like does which really is ambiguous, it makes it
unnecessary to provide specific parsing information for either parse.

6. Reduplication

Simple reduplicative processes can be represented in Shoebox. The following
example specifies a reduplication of from one to three consonants followed by a
vowel at the beginning of the reduplicated root, stem or word. For Shoebox to
recognize that this is an entry for reduplication, the \lx field must contain the letters
“dup” somewhere. (It may be best for these to occur at the beginning of the field so
that all entries for reduplication sort together.) The \a fields are used for specifying
the pattern to match using variables defined in the language encoding properties.

\lx dupCV-
\a [cons][vowel]-
\a [cons][cons][vowel]-
\a [cons][cons][cons][vowel]-
\ps intens
\ge very

English doesn’t make regular use of reduplication, but if the process above was
English, then the following would be correct parses:

bibig strostrong blablack
dupCV- big dupCV- strong dupCV- black
very- large very- powerful very- dark
intens- adj intens- adj intens- adj

Reduplicative suffixation can also be specified, as can reduplication with fixed
letters. For example, the following specifies a reduplication of the final consonant
cluster with an intermediate i.

\lx -dupiC
\a -i[cons]
\a -i[cons][cons]
\a -i[cons][cons][cons]
\ps dimin
\ge a_bit

Here’s what the parses would look like:

bigig stronging blackick
big -dupiC strong -dupiC black -dupiC
large -a_bit powerful -a_bit dark -a_bit
adj -dimin adj -dimin adj -dimin

It is possible to specify the type of reduplication in English which copies a syllable,
replacing the vowel — usually with i — as in tip-top, tick-tock, criss-cross, flip-flop
and wishy-washy. The entry would be as follows:

\lx dupCiC
\a -[cons]i[cons]
\a -[cons]i[cons][cons]
\a -[cons][cons]i[cons]
\ps redup
\ge intens

Parsing with Shoebox

8

Reduplication of a whole unit can be specified as follows:

\lx dup
\a [...]
\ps redup
\ge informal

By adding hyphens, you can also specify prefix full reduplication or suffix full
reduplication.

Here’s an English example of full reduplication, which also demonstrates its
interaction with suffixation and the fact that reduplicative forms with hyphens are
parsed correctly.

goody-goody
dup - good -y
informal - nice -FAMIL
redup - adj -familiar

	I
	Introduction
	Simple Parsing: Roots and Affixes
	Infixes
	Compound Roots

	Alternate Forms
	Underlying Forms
	Forced Values — Resolving Ambiguity
	Direct Parsing — Preventing Incorrect Parses

	Morphophonemics
	Context Sensitivity — Preventing Incorrect Parses
	Ensuring Ambiguity is Recognized

	Reduplication

