

User Guide – Version 3.0.1

(For the latest documentation see also:
http://korpling.github.io/ANNIS/)

title: ANNIS User Guide
ANNIS version: 3.0.1
guide version: 1.0.0
date: 09 October 2013

author: Amir Zeldes
organization: SFB 632 Information Structure / D1 Linguistic Database
 Humboldt-Universität zu Berlin & Universität Potsdam
e-mail: annis-admin@ling.uni-potsdam.de
homepage: http://www.sfb632.uni-potsdam.de/annis/

1

Contents

1 Introduction .. 2

2 New Features in Versions 3.0.0 and 3.0.1 ... 2

3 Installing ANNIS ... 3

3.1 Installing a Local Version (ANNIS Kickstarter) .. 3

3.2 Building and Installing an ANNIS Server .. 4

4 Querying Corpora in ANNIS ... 6

4.1 The ANNIS Interface .. 6

4.2 Using the ANNIS Query Builder .. 8

4.3 Searching for Word Forms.. 9

4.4 Searching for Annotations .. 11

4.5 Searching using Regular Expressions ... 12

4.6 Searching for Trees ... 13

4.7 Searching for Pointing Relations – Coreference and Dependencies 14

4.8 Exporting Search Results .. 15

4.9 Complete List of Operators ... 18

5 Configuring Visualizations ... 20

5.1 Triggering Visualizations with the Resolver Table .. 20

5.2 Visualizations with Software Requirements ... 27

5.3 Changing maximal context size, context steps and result page sizes 27

6 Importing and Configuring Corpora .. 28

6.1 Converting Corpora for ANNIS using SaltNPepper 28

6.2 Importing Corpora in the relANNIS format ... 28

6.3 Configuring Settings for a Corpus .. 28

6.4 Multiple Instances of the Interface ... 29

6.5 User management.. 30

2

1 Introduction

ANNIS is an open source, browser-based search and visualization architecture for
multi-layer corpora. It can be used to search for complex graph structures of annotated
nodes and edges forming a variety of linguistic structures, such as constituent or
dependency syntax trees, coreference and parallel alignment edges, span annotations
and associated multi-modal data (audio/video). This guide provides an overview of the
current ANNIS system, first steps for installing either a local instance or an ANNIS
server with a demo corpus, as well as tutorials for converting data for ANNIS and
running queries with AQL (ANNIS Query Language).

2 New Features in Versions 3.0.0 and 3.0.1

Features:

Hot fix:

- V3.0.1 corrects a bug that may make queries for three consecutive spans with
multiple tokens miss some search results! Please replace V3.0.0 with 3.0.1.

Backend (database):

- Support for multiple/overlapping tokenizations (multiple simultaneous speakers,
conflicting tokenizations produced by different tools)

- Support for subtokenization (annotations smaller than the reference word form unit)

Frontend (user interface):

- Completely new front-end architecture (using VAADIN)
- Build your own HTML visualization with CSS3
- Support for streaming A/V media and grid/player interaction (click on annotation

to navigate in aligned A/V stream)
- Page-aligned PDF-viewer
- View KWIC and context using multiple segmentation definitions (e.g. ±5 units of

normalized/diplomatic text or ±5 units of speaker1/speaker2/… etc.
- Automatically or manually generated example queries per corpus on welcome

screen
- List of available metadata added to Corpus Explorer
- Support for “corpus collections” (thematic groups of corpora in corpora list)
- Support for server-side embedded fonts
- Visualizations can be hidden/shown by default, option to use grid as default view

Query language and query interface:

- Segmentation-based adjacency operators (e.g. within 1-3 sentences)
- Support for user defined and randomly generated example queries
- Virtual keyboard
- Visible query links (copy & paste link from browser)

(For change logs of previous versions see their respective distributions or user guides)

3

3 Installing ANNIS

3.1 Installing a Local Version (ANNIS Kickstarter)

Local users who do not wish to make their corpora available online can install ANNIS
Kickstarter under most versions of Linux, Windows and Mac OS. To install
Kickstarter follow these steps:

1. Download and install PostgreSQL 9.2 for your operating system from

http://www.postgresql.org/download/ and make a note of the administrator

password you set during the installation. After installation, Postgres may
automatically launch the Postgres Stack Builder to download additional
components – you can safely skip this step and cancel the Stack Builder if you
wish. You may need to restart your OS if the Postgres installer tells you to.

Note: Under Linux, you might have to set the PostgreSQL password manually.
E.g. on Ubuntu you can achieve this with by running the following commands:

sudo -u postgres psql

\password

\q

2. Download and unzip the ANNIS Kickstarter ZIP-file from the ANNIS website.

3. Start AnnisKickstarter.bat if you’re using Windows, AnnisKickstarter.cmd on

Mac or run the bash script AnnisKickstarter.sh otherwise (this may take a few
seconds the first time you run Kickstarter). At this point your Firewall may try
to block Kickstarter and offer you to unblock it – do so and Kickstarter should
start up.

Note: for most users it is a good idea to give Java more memory (if this is not
already the default). You can do this by editing the script AnnisKickstarter and
typing the following after the call to start java (before -splash:splashscreen.gif):

-Xss1024k -Xmx1024m

(To accelerate searches it is also possible to give the Postgres database more
memory, see the link in the next section below).

4. Once the program has started, if this is the first time you run Kickstarter, press
“Init Database” and supply your PostGres administrator password from step 1.

5. Download and unzip the pcc2 demo corpus from the ANNIS website.

4

6. Press “Import Corpus” and navigate to the directory containing the directory
pcc2_v6_relAnnis/. Select this directory (but do not go into it) and press OK.

7. Once import is complete, press “Launch Annis frontend” test the corpus (click
on one of the example queries displayed on the screen, or try selecting the pcc2
corpus, typing pos="NN" in the AnnisQL box and clicking “Show Result”. See
the section “Querying and importing corpora in ANNIS” in this guide for some
more example queries, or press the Tutorial button at the top left of the
interface for more information).

3.2 Building and Installing an ANNIS Server

The ANNIS server version can be installed on UNIX based server, or else under
Windows using Cygwin, the freely available UNIX emulator. To install the ANNIS
server:
1. Download and install PostgreSQL 9.2 for your operating system from

http://www.postgresql.org/download/ and make a note of the administrator

password you set during the installation. After installation, Postgres may
automatically launch the Postgres Stack Builder to download additional
components – you can safely skip this step and cancel the Stack Builder if you
wish. You may need to restart your OS if the Postgres installer tells you to.

Note: Under Linux, you might have to set the PostgreSQL password manually.
E.g. on Ubuntu you can achieve this with by running the following commands:

2. Install a Java Servlet Container ("Java web server") such as Tomcat or Jetty

3. Make sure you have installed JDK 6 or JDK 7 (or install them if you don’t)

4. Download the ANNIS service distribution file annis-service-<version>-

distribution.tar.gz from t website and then unzip the downloaded file:

tar xzvf annis-service-<version>-distribution.tar.gz -C

<installation directory>

5. Set the environment variables (each time when starting up)

export ANNIS_HOME=<installation directory>

export PATH=$PATH:$ANNIS_HOME/bin

6. Next initialize your ANNIS database (only the first time you use the system):

annis-admin.sh init -u <username> -d <dbname> -p <new user

password> -P <postgres superuser password>

5

You can omit the PostgreSQL administrator password option (-P). Then the
database and user must already exists. E.g. you should execute the following as
PostgreSQL administrator:

CREATE LANGUAGE plpgsql; -- ignore the error if the

language is already installed

CREATE USER myuser PASSWORD 'mypassword';

CREATE DATABASE mydb OWNER myuser ENCODING 'UTF8';

Now you can import some corpora:

annis-admin.sh import path/to/corpus1 path/to/corpus2 ...

Warning

The above import-command calls other PostgreSQL database commands. If
you abort the import script with Ctrl+C, these SQL processes will not be
automatically terminated; instead they might keep hanging and prevent access
to the database. The same might happen if you close your shell before the
import script terminates, so you will want to prefix it with the "nohup"-
command.

7. Now you can start the ANNIS service:

annis-service.sh start

8. To get the ANNIS front-end running, first download annis- gui-<version>.war
from our website and deploy it to your Java servlet container (this is depending
on the servlet container you use).

Note

We also strongly recommend reconfiguring the Postgres server’s default
settings as described here.

6

4 Querying Corpora in ANNIS

4.1 The ANNIS Interface

The ANNIS interface is comprised of two main areas: the search form on the left and
the tabbed workspace on the right in the picture above. If you have imported corpora
with example queries (the demo corpus pcc2 includes some, but see Section 6.3 on
how to generate your own), then you will see some clickable example queries in the
workspace. You can always return to these by clicking the ‘example queries’ tab, and
see example queries for specific corpora by selecting them. If no example queries are
in the database, the interface will show you the ANNIS tutorial, which also uses the
pcc2 corpus as an example. It is therefore recommended to import the pcc2 demo
corpus when working with the system for the first time. For more information on
generating example queries, see Section 6.3.

The Search Form

The Search Form, on the left of the interface window shown above, contains a list of
all corpora available to the current user. If you are not logged in, you will only have
access to the corpora that the user "anonymous" is allowed to see (in the local
Kickstarter version, all corpora are available by default). Additionally, it is possible to
filter the visible corpora by group using the selection box above the list (by default
showing ‘all’, as in the image above). For user right management and corpus group
configuration in the ANNIS server version, see Sections 6.3 and 6.4.

Using the checkboxes on the left of each corpus, it is possible to select which corpora
should be searched in (hold down 'control' to select multiple corpora simultaneously).
The list also gives the number of texts and tokens in each available corpus.

7

Pressing the button next to a corpus in the list will open the corpus explorer
window (see picture below). The left side of this window shows metadata for the entire
corpus, and using the box "select corpus/document" also allows you to browse the
metadata for individual documents within the corpus. On the right hand side, a list of
available annotations and simple example queries are shown. The list has four parts for
node annotations (referring to elements covering some text in the corpus), edge types
(the types of edges that apply between such elements), edge annotations (referring to
those edges) and meta-data annotations.

Clicking on a query will copy it to the "AnnisQL" field at the top of the form and
pressing the link icon will give you a citation link that can be used to access the query
from any browser. The queries in this window are rather simple, e.g. an annotation
name and some frequent value for that annotation. To create more complex, user
defined example queries, see Section 6.3.

The "AnnisQL" field at the top of the form is used for inputting queries manually (see
the tutorials on the ANNIS Query Language below). Once a query has been entered,
pressing the "Show Result" button (or using the shortcut ctrl+Enter) will retrieve the
number of matching positions in the selected corpora, as well as the number of
documents they come from, in the Status box. On the right side of the interface, the
Query Result tab will display the first set of matches. Queries from the current session
are saved in the query history and can be accessed using the button underneath the
AnnisQL field.

The context size surrounding the matching expressions in the result list can be changed
in the "Search Options" area of the search form, using the boxes "context left" and
"context right". By default, context can be set to up to 10 tokens on each side, though
some corpora allow longer spans, such as entire texts, to be viewed using special
discourse visualizations.

8

To change the maximum context for all or for specific corpora, see the information in
Section 5.3.

The Result Window

The result window shows search results in pages of 10 hits each by default (this can be
changed in the Search Form under Search Options). To change the available hits per
page, see Section 5.3. The toolbar at the top of the window allows you to navigate
between the result pages. The "Token Annotations" button on the toolbar allows you to
toggle the token based annotations, such as lemmas and parts-of-speech, on or off for
you convenience. The query is also repeated at the top right of the window for your
reference, and is represented in a masked form in the browser's URL. To send a query
by e-mail or cite it in a paper or on a web page you can simply copy the URL from
your browser.

By default, the result list itself initially shows
only a KWIC (key word in context)
concordance of matching positions in the
selected corpora, though other default
visualizations can be chosen (e.g. a grid for
dialogue corpora, see Section 5). The region
matching the query is marked in red and the
context in black on either side. If the query
contains multiple annotations, they will be
highlighted in different colors within the
search result. Token annotations are
displayed in gray under each token, and
hovering over them with the mouse will
show the annotation name and namespace.
More complex annotation levels can be expanded, if available, by clicking on the plus
icon next to the level's name, e.g. 'information structure' and 'constituents' for the
annotations in the grid and tree views in the picture (circled in red).

4.2 Using the ANNIS Query Builder

To open the graphical query builder, click on the Query Builder button on the Search
Form (clicking the button again will close the Query Builder). On the left-hand side of
the toolbar at the top of the query builder canvas, you will see the Create Node button.
Use this button to define nodes to be searched for (tokens, non-terminal nodes or
annotations). Creating nodes and modifying them on the canvas will immediately
update the AnnisQL field in the Search Form with your query, though updating the
query on the Search Form will not create a new graph in the Query Builder.

9

In each node you create you may click on the + symbol to specify an annotation value.
The annotation name can be typed in or selected from a drop down list. The operator
field in the middle allows you to choose between an exact
match (the '=' symbol) or wildcard search using Regular
Expressions (the '~' symbol), and negated versions of these
operators with a '!'. The annotation value is given on the
right, and should NOT be surrounded by quotations (see the
example below). It is also possible to specify multiple
annotations applying to the same position by clicking on +
multiple times. Clicking on the broom will delete the values
in the node. To search for word forms, simply leave the
default field name 'tok' on the left and type directly on the
right side of the node. A node with no data entered will
match any node, that is an underspecified token or non-
terminal node or annotation.

To specify the relationship between nodes, first create
more than one node. Then click on the arched arrow
button of the source node, and then click the word
"Dock", which becomes available on the other nodes.
An edge will connect the nodes with an extra box from
which operators may be selected (see below). For
operators allowing additional labels (e.g. the dominance
operator > allows edge labels to be specified), you may
type directly into the edge's operator box, as in the
example with a "func" label in the image to the left.

Note that the node clicked on first (where the arrow button was clicked) will be the
first node in the resulting query, i.e. if this is the first node it will dominate the second
node (#1 > #2) and not the other way around, as also represented by the arrows along
the edge. You can also move and reposition nodes for your convenience by clicking on
the square button at the top left of each node and dragging the nodes across the canvas.

4.3 Searching for Word Forms

To search for word forms in ANNIS, simply select a corpus (in this example the small
pcc2 demo corpus) and enter a search string between double quotation marks, e.g.:

"statisch"

10

Note that the search is case sensitive, so it will not find cases of capitalized 'Statisch',
for example at the beginning of a sentence. In order to find both options, you can either
look for one form OR the other using the pipe sign (|):

"statisch" | "Statisch"

or else you can use regular expressions, which must be surrounded by slashes (/)
instead of quotation marks:

/[Ss]tatisch/

To look for a sequence of multiple word forms, enter your search terms separated by &
and then specify that the relation between the elements is one of precedence, as
signified by the period (.) operator:

"so" & "statisch" & #1 . #2

The expression #1 . #2 signifies that the first element ("so") precedes the second
element ("statisch"). For indirect precedence (where other tokens may stand between
the search terms), use the .* operator:

/[Ss]o/ & "statisch" & "wie" & #1 . #2 & #2 .* #3

The above query finds sequences beginning with either "So" or "so", followed directly
by "statisch", which must be followed either directly or indirectly (.*) by "wie". A
range of allowed distances can also be specified numerically as follows:

/[Ss]tatisch/ & "wie" & #1 .1,5 #2

Meaning the two words may appear at a distance of 1 to 5 tokens. The operator .*
allows a distance of up to 50 tokens by default, so searching with .1,50 is the same as
using .* instead. Greater distances (e.g. .1,100 for 'within 100 tokens') should always
be specified explicitly.1

Finally, we can add metadata restrictions to the query, which filter out documents not
matching our definitions. Metadata attributes must be preceded by the prefix meta::
and may not be bound (i.e. they are not referred to as #1 etc. and the numbering of
other elements ignores their existence):

/[Ss]tatisch/ & "wie" & #1 .1,5 #2 & meta::Genre="Sport"

1 If your corpus contains multiple segmentations, such as subtokens, morphemes or syllables, data from
multiple overlapping speakers, or larger segmentation units (lines, sentences), it is also possible to query

for precedence within n segmentation units with #1 .unit_name,1,2 #2 . See the ANNIS Multiple
Segmentation Corpora Guide for more details.

11

To view metadata for a search result or for a corpus, press the "i" icon next to it in the
result window or in the search form respectively.

4.4 Searching for Annotations

Annotations may be searched for using an annotation name and value. The names of
the annotations vary from corpus to corpus, though many corpora contain part-of-
speech and lemma annotations with the names pos and lemma respectively (annotation
names are case sensitive). For example, to search for all forms of the German verb sein
'to be' in a corpus with lemma annotation such as pcc2, simply select the pcc2 corpus
and enter:

lemma="sein"

Negative searches are also possible using != instead of =. For negated tokens (word
forms) use the reserved attribute tok. For example:

lemma!="sein"

or:

tok!="ist"

Metadata can also be negated similarly:

lemma="sein" & meta::Genre!="Sport"

To only find finite forms of this verb in pcc2, use the part-of-speech (pos) annotation
concurrently, and specify that both the lemma and pos should apply to the same
position:

lemma="sein" & pos="VAFIN" & #1 _=_ #2

The expression #1 _=_ #2 uses the span identity operator to specify that the first
annotation and the second annotation apply to exactly the same span of tokens in the
corpus. Annotations can also apply to longer spans than a single token: for example, in
pcc2, the annotation Inf-Stat signifies the information structure status of a discourse
referent. This annotation can also apply to phrases longer than one token. The
following query finds spans containing new discourse referents, not previously
mentioned in the text:

exmaralda:Inf-Stat="new"

If the corpus contains no more than one annotation type named Inf-Stat, the optional

namespace (in this case exmaralda:) may be dropped; if there are multiple

annotations with the same name but different namespaces, dropping the namespace
will find all of those annotations. In order to view the span of tokens to which this
annotation applies, enter the query and click on "Show Result", then open the

12

information structure annotation grid to view the annotation covering the span. Further
operators can test the relationships between potentially overlapping annotations in
spans. For example, the operator _i_ examines whether one annotation fully contains
the span of another annotation (the i stands for 'includes'):

Topic="ab" & Inf-Stat="new" & #1 _i_ #2

This query finds aboutness topics (Topic="ab") containing information-structurally
new discourse referents.

4.5 Searching using Regular Expressions

When searching for word forms and annotation values, it is possible to employ
wildcards as placeholders for a variety of characters, using Regular Expression syntax
(see http://www.regular-expressions.info/ for detailed information). To search for
wildcards use slashes instead of quotation marks to surround your search term. For
example, you can use the period (.) to replace any single character:

tok=/de./

This finds word forms such as "der", "dem", "den" etc. It is also possible to make
characters optional by following them with a question mark (?). The following
example finds cases of "das" and "dass", since the second "s" is optional:

tok=/dass?/

It is also possible to specify an arbitrary number of repetitions, with an asterisk (*)
signifying zero or more occurrences or a plus (+) signifying at least one occurrence.
For example, the first query below finds "da", "das", and "dass" (since the asterisk
means zero or more times the preceding "s"), while the second finds "das" and "dass",
since at least one "s" must be found:

tok=/das*/

tok=/das+/

It is possible to combine these operators with the period operator to mean any number
of occurrences of an arbitrary character. For example, the query below searches for pos
(part-of-speech) annotations that begin with "VA", corresponding to all forms of
auxiliary verbs. The string "VA" means that the result must begin with "VA", the
period stands for any character, and the asterisk means that 'any character' can be
repeated zero or more time, as above.

pos=/VA.*/

This finds both finite verbs ("VAFIN") and non-finite ones ("VAINF"). It is also
possible to search for explicit alternatives by either specifying characters in square

13

brackets or longer strings in round brackets separated by pipe signs. The first example
below finds either "dem" or "der" (i.e. "de" followed by either "m" or "r") while the
second example finds lemma annotations that are either "sein" or "werden".

tok=/de[mr]/

lemma=/(sein|werden)/

Finally, negative searches can be used as usual with the exclamation point, and regular
expressions can generally be used also in edge annotations. For example, if we search
for trees (see also Searching for Trees below) where a node dominates another node
with edges not containing an object, we can use a wildcard to rule out all edges labels
beginning with "O" for object:

cat="VP" & cat & #1 >[func!=/O.*/] #2

4.6 Searching for Trees

In corpora containing hierarchical structures, annotations such as syntax trees can be
searched for by defining terminal or none-terminal node annotations and their values.
A simple search for prepostional phrases in the small pcc2 demo corpus could look like
this:

tiger:cat="PP"

If the corpus contains no more than one annotation called cat, the optional namespace,

in this case tiger:, may be dropped. This finds all PP nodes in the corpus. To find

all PP nodes directly dominating a proper name, a second element can be specified
with the appropriate part-of-speech (pos) value:

cat="PP" & pos="NE" & #1 > #2

The operator > signifies direct dominance, which must hold between the first and the
second element. Once the Result Window is shown you may open the syntactic
constituent annotation level to see the corresponding tree.

Note that since the context is set to a number of tokens left and right of the search term,
the tree for the whole sentence may not be retrieved. To do this, you may want to

14

specifically search for the sentence dominating the PP. To do so, specify the sentence
in another element and use the indirect dominance (>*) operator:2

cat="S" & cat="PP" & pos="NE" & #1 >* #2 & #2 > #3

If the annotations in the corpus support it, you may also look for edge labels. Using the
following query will find all adjunct modifiers of a VP, dominated by the VP node
through an edge labeled MO. Since we do not know anything about the modifying
node, whether it is a non-terminal node or a token, we simply use the node element as a
place holder. This element can match any node or annotation in the graph:

cat="VP" & node & #1 >[tiger:func="MO"] #2

It is also possible to negate the label of the dominance edge as in the following query:

cat="VP" & node & #1 >[tiger:func!="MO"] #2

which finds all VPs dominating a node with a label other than MO.

4.7 Searching for Pointing Relations – Coreference and Dependencies

Pointing relations are used to express an arbitrary directed relationship between two
elements (terminals or non-terminals) without implying dominance or coverage

inheritance. For instance, in the pcc2 demo corpus, elements in the mmax: namespace

may point to each other to express coreference or anaphoric relations. The following
query searches for two np_form annotations, which specify for example whether a
nominal phrase is pronominal, definite or indefinite.

mmax:np_form="pper" &

mmax:np_form="defnp" &

#1 ->anaphor_antecedent #2

Using the pointing relation operator -> with the type anaphor_antecedent, the first

np_form, which should be a personal pronoun (pper), is said to be the anaphor to its
antecedent, the second np_form, which is definite (defnp). To see a visualization of the
coreference relations, open the coreference annotation level in the example corpus. In
the image below, one of the matches for the above query is highlighted in red (die

Seeburger und einige Groß-Glienicker ... sie ‘the Seeburgers and some Groß-
Glienickers... they’). Other discourse referents in the text (marked with an underline)
may be clicked on, causing coreferential chains containing them to be highlighted as
well. Note that discourse referents may overlap, leading to multiple underlines: Die

Seeburger ‘the Seeburgers’ is a shorter discourse referent overlapping with the larger
one (‘the Seeburgers and some Groß-Glienickers’), and each referent has its own

2 Another way to always find exactly whole sentences in your own corpora is to create a segmentation
level for those sentences, then set the default segmentation to that level and set the default context to
zero for that corpus. See the ANNIS Multiple Segmentation Corpora Guide for more details.

15

underline. Annotations of the coreference edges of each relation can be viewed by
hovering over the appropriate underline.

Another way to use pointing relations is found in syntactic dependency trees. The
queries in this case can use both pointing relation types and annotations, as in the
following query:

pos="VVFIN" & tok & #1 ->dep[func="obja"] #2

This query searches for a finite verb (with the part-of-speech VVFIN) and a token,
with a pointing relation of the type ‘dep’ (for dependency) between the two, annotated
with ‘func="obja"’ (the function Object, Accusative). The result can be viewed with
the dependency arch visualizer, which shows the verb gibt ‘gives’ and its object
Wunder ‘miracles’.

4.8 Exporting Search Results

By going to the Export section at the bottom of the search form on the left, you can
select one of several exporters. Exported results can be downloaded using the
Download button.

16

The SimpleTextExporter simply gives the text for all tokens in each search result,
including context, in a one-row-per-hit format. The tokens covered by the match area
are marked with square brackets and the results are numbered, as in the following
example:

1. Tor zum 1:0 für die [Ukraine] stürzte der 1,62 Meter große
2. der 1,62 Meter große Gennadi [Subow] die deutsche Nationalelf vorübergehend in
3. und Reputation kämpfenden Mannschaft von [Rudi] Völler der Weg zur Weltmeisterschaft
4. Reputation kämpfenden Mannschaft von Rudi [Völler] der Weg zur Weltmeisterschaft
endgültig
5. die deutschen Nationalkicker einen " [Rudi] Riese " auf der Bank

The TextExporter adds all annotations of each token separated by slashes (e.g.

dogs/NN/dog for the token dogs annotated with a part-of-speech NN and a lemma

dog).

The GridExporter adds all annotations available for the span of retrieved tokens, with
each annotation layer in a separate line. Annotations are separated by spaces and the
hierarchical order of annotations is lost, though the span of tokens covered by each
annotation may optionally be given in square brackets (to turn this off use the optional

parameter numbers=false). The user can specify annotation layers to be exported in
the additional ‘Parameters’ box, using the setting ‘keys=’ and annotation names
separated by comas. If nothing is specified in the parameters box, all available
annotations will be exported. Multiple options are separated by a semicolon, e.g.

keys=tok,pos,cat;numbers=false. An example output with token numbers looks as
follows.

1. tok ein Dialog zwischen den Generationen angestoßen .
 cat NP[1-5] S[1-6] VP[1-6] PP[3-5]
 pos ART[1-1] NN[2-2] APPR[3-3] ART[4-4] NN[5-5] VVPP[6-6] $.[7-7]

Meaning that the annotation cat="NP" applied to tokens 1-5 in the search result, and so
on. Note that when specifying annotation layers, if the reserved name ‘tok’ is not
specified, the tokens themselves will not be exported (annotations only).

The WekaExporter outputs the format used by the WEKA machine learning tool
(http://www.cs.waikato.ac.nz/ml/weka/). By default, only the attributes of the search
elements (#1, #2 etc. in AQL) are outputted, and are separated by commas. The order
and name of the attributes is declared in the beginning of the export text, as in this
example:

@relation name

@attribute #1_id string

@attribute #1_token string

@attribute #1_tiger:cat string

@attribute #2_id string

@attribute #2_token string

@attribute #2_tiger:lemma string

@attribute #2_tiger:morph string

@attribute #2_tiger:pos string

17

@data

'288662','NULL','NP','288392','ganze','ganz','Pos.Acc.Sg.Fem','ADJA'

'289175','NULL','NP','288712','geladenen','geladen','Pos.Nom.Pl.*','ADJA'

'289660','NULL','NP','289409','Döberitzer','Döberitzer','Pos.*.*.*','ADJA'

'288672','NULL','NP','288302','deutschen','deutsch','Pos.Nom.Pl.Masc','ADJA'

'289614','NULL','NP','289291','deutsche','deutsch','Pos.Nom.Sg.Fem','ADJA'

'289625','NULL','NP','289245','fulminanter','fulminant','Pos.Nom.Sg.Masc','ADJA'

'288607','NULL','NP','288242','einstige','einstig','Pos.Nom.Sg.Fem','ADJA'

'288620','NULL','NP','288334','ähnliche','ähnlich','Pos.Acc.Pl.Neut','ADJA'

'289220','NULL','NP','288883','große','groß','Pos.Nom.Sg.Fem','ADJA'

'288610','NULL','NP','288313','deutsche','deutsch','Pos.Acc.Sg.Fem','ADJA'

'289174','NULL','NP','288809','böse','böse','Pos.Nom.Sg.Fem','ADJA'

'289611','NULL','NP','289241','Dallgower','Dallgower','Pos.*.*.*','ADJA'

'288624','NULL','NP','288330','ukrainische','ukrainisch','Pos.Nom.Sg.Masc','ADJA'

The export shows the properties of an NP node dominating a token with the part-of-
speech ADJA. Since the token also has other attributes, such as the lemma, the token
text and morphology, these are also retrieved.

It is also possible to output metadata annotations per hit using the WekaExporter. To

do so, use the parameter metakeys=meta1,meta2 etc. For example, if your documents
have a metadata annotation called 'genre', you may export it for each search result as a

further column using metakeys=genre in the parameters box.

Note that exporting may be slow in most exporters if the result set is very large!

18

4.9 Complete List of Operators

The ANNIS Query Language (AQL) currently includes the following operators:

Operator Description Illustration Notes

.
direct
precedence

A B

For non-terminal nodes, precedence is
determined by the right most and left

most terminal children. Use .seg_name

for precendence on a specific
segmentation layer.

.*
indirect
precedence

A x y z B

For specific sizes of precedence

spans, .n,m can be used, e.g. .3,4 -

between 3 and 4 token distance. Use

e.g. .seg_name,3,4 for 3 to 4 unit

distance in another segmentation.

>
direct
dominance

A
|
B

A specific edge type may be specifed,

e.g.: >secedge to find secondary

edges. Edges labels are specified in

brackets, e.g. >[func="OA"] for an

edge with the function 'object,
accusative'

>*
indirect
dominance

A
|
...
|
B

For specific distance of

dominance, >n,m can be used,

e.g. >3,4 - dominates with 3 to 4

edges distance

=
identical
coverage

A

B
Applies when two annotation cover the
exact same span of tokens

i inclusion
AAA

B
Applies when one annotation covers a
span identical to or larger than another

o overlap
AAA

 BBB

For overlap only on the left or right

side, use _ol_ and _or_ respectively

l left aligned
AAA

BB
Both elements span an area beginning
with the same token

r right aligned
AA

BBB
Both elements span an area ending
with the same token

->LABEL
labeled

pointing
relation

 LABEL

A B

A labeled, directed relationship
between two elements. Annotations
can be specified with
->LABEL[annotation="VALUE"]

->LABEL *
indirect
pointing
relation

 LABEL LABEL

A … B

An indirect labeled relationship
between elements. The length of the

chain is specified with ->LABEL n,m for

relation chains of length n to m

19

>@l
left-most
child

A
/ | \
B x y

>@r right-most
child

A

/ | \
x y B

$
Common
parent node

x
/ \
A B

$*
Common
ancestor
node

x
|
...
/ \
A B

#x:arity=n Arity
x

 / | \
 1 … n

Specifies the amount of directly
dominated children that the searched
node has

#x:length=n Length

x
...

 / \
 1 … n

Specifies the length of the span of
tokens covered by the node

#x:root Root

x
...

 / \
 1 … n

node x is the root of a subgraph (i.e. it
is not dominated by any node)

20

5 Configuring Visualizations

5.1 Triggering Visualizations with the Resolver Table

By default, ANNIS displays all search results in the Key Word in Context (KWIC)
view in the "Query Result" tab, though in some cases you may wish to turn off this
visualization (specifically dialog corpora, see below). Further visualizations, such as
syntax trees or grid views, are displayed by default based on the following namespaces:

Nodes with the namespace tiger: tree visualizer
Nodes with the namespace exmaralda: grid visualizer
Nodes with the namespace mmax: grid visualizer
Edges with the namespace mmax: discourse view

In these cases the namespaces are usually taken from the source format in which the
corpus was generated, and carried over into relAnnis during the conversion. It is also
possible to use other namespaces, most easily when working with PAULA XML. In
PAULA XML, the namespace is determined by the string prefix before the first period
in the file name / paula_id of each annotation layer (for more information, see the
PAULA XML documentation at http://www.sfb632.uni-potsdam.de/en/paula.html).
Data converted from Exmaralda can also optionally use speaker names as namespaces.
For other formats and namespaces in the relAnnis data model, see the SaltNPepper
documentation of the appropriate format module (details in Section 6).

In order to manually determine the visualizer and the display name for each namespace
in each corpus, the resolver table in the database must be edited. This can either be

done by editing the relAnnis file resolver_vis_map.tab in the corpus directory
before import, or within the database after import. To edit the table in the database
after import, open PGAdmin (or if you did not install PGAdmin with ANNIS then via
PSQL), and access the table resolver_vis_map (it can be found in PGAdmin under
PostgreSQL 9.2 > Databases > anniskickstart > Schemas > public > Tables (for
ANNIS servers replace “anniskickstart” with your database name, determined as
<dbname> in the installation instructions in Section 3.2). You may need to give your
PostgreSQL password to gain access. Right click on the table and select View Data >

View All Rows. The table should look like this:

21

Resolver table (resolver_vis_map)

The columns in the table (or the file resolver_vis_map.tab before import) can be
filled out as follows:

- corpus determines the corpora for which the instruction is valid (null values
apply to all corpora, otherwise the name of the relevant corpus)

- version is currently unused and reserved for future development.
- namespace specifies relevant namespace which triggers the visualization
- element determines if a node or an edge should carry the relevant annotation

for triggering the visualization
- vis_type determines the visualizer module used and is one of:

- kwic (default key-word in context view)

- tree (constituent syntax tree)

22

- grid (annotation grid, with annotations spanning multiple tokens)

- grid_tree (a grid visualizing hierarchical tree annotations as ordered
grid layers; note that all layers represent the same annotation name at
different hierarchical depths, marked level:0,1,2,… etc. on the left)

- old_grid (deprecated version of grid)

- discourse (a view of the entire text of a document, possibly with
interactive coreference links. It is possible to use this visualization to
view entire texts even if you do not have coreference annotations)

23

- arch_dependency (dependency tree with labeled arches between tokens;
requires SVG enabled browser, see 5.2)

- ordered_dependency (arrow based dependency visualization for corpora
with dependencies between non terminal nodes; requires GraphViz, see
5.2)

- hierarchical_dependency (unordered vertical tree of dependent tokens;
requires GraphViz, see 5.2)

24

- graph (a debug view of the annotation graph; requires GraphViz, see
5.2)

- audio (a linked audio file)

- video (a linked video file)

- pdf or pdfdoc (a linked pdf file, showing either a specific page aligned
with an annotation or an entire pdf document respectively)

25

- rst or rstdoc (a visualization for rhetorical structure theory annotations,
of either just the search result with context or the entire document
respectively)

- html or htmldoc (a versatile annotation-triggered css-based visualization

of either the immediate search result context or the entire document
respectively; see the ANNIS HTML Visualization Guide for more
details and some example stylesheets)

- display_name determines the heading that is shown for each visualizer in the
interface

- order determines the order in which visualizers are rendered in the interface
(low to high)

- mappings provides additional parameters for some visualizations:
- tree – the annotation names to be displayed in non terminal nodes can

be set e.g. using node_key:cat for an annotation called cat (the default),

26

and similarly the edge labels using edge_key:func for an edge label
called func (the default). Instructions are separated using semicolons.

- graph – use ns_all:true to visualize the entire annotation graph.
Specifying e.g. node_ns:tiger or edge_ns:tiger instead causes only
nodes and edges of the namespace tiger to be visualized (i.e. only a
subgraph of all annotations)

- grid – it is possible to specify the order of annotation layers in each grid.
Use annos: anno_name1, anno_name2, anno_name3 to specify the
order or annotation layers. If anno: is used, additional annotation layers
not present in the list will not be visualized. If mappings is left empty,
layers will be ordered alphabetically

- grid_tree – specify the name of the annotation to be visualized in the
grid with node_key:name. Note that all grid levels visualize the same
annotation name at different hierarchical depths.

- rst / rstdoc – the names of rst edges can be configured with the setting
edge. Additionally, some graphical parameters can be modified:
siblingOffet defines the distance between sibling nodes; subTreeOffset
defines the distance between node and parent node; nodeWidth defines
the width of a node; labelSize defines the font size of a node label;
edgeLabelColor specifies an HTML Color for the font color of an edge
label; nodeLabelColor specifies an HTML Color for the font color of a
node label.

- pdf / pdfdoc – it is possible to configure the height of the pdf window
using the height instruction (in pixels), as well as the name (node_key)
of the node annotation to be used to give individual page numbers
aligned with a span of tokens (relevant for pdf only, pdfdoc always
shows all pages). The instructions can be combined as follows:
node_key:pp;height:400.

- html / htmldoc – you must specify the name of the css stylesheet (*.css)
and configuration file (*.config) for the visualization, which are place in
the ExtData folder of the relAnnis corpus (see HTML Visualization
Guide for details). To configure the stylesheet name, use the value
config:filename, where filename is the commono name of both
the .config and the .css files, without the extension.

- visibility is optional and can be set to:
- hidden – the default setting: the visualizer is not shown, but can be

expanded by clicking on its plus symbol.
- permanent – always shown, not closable
- visible – shown initially, but closable by clicking on its minus symbol.
- removed – not shown; this can be used to hide the kwic visualization in

corpora which require a grid by default (e.g. dialogue corpora).
- preloaded – like hidden, but actually rendered in the background even

before its plus symbol is clicked. This is useful for multimedia player
visualizations, as the player can be invoked and a file may be loaded
before the user prompts the playing action.

27

5.2 Visualizations with Software Requirements

Some ANNIS visualizers require additional software, depending on whether or not
they render graphics as an image directly in Java or not. At present, three visualizations
require an installation of the freely available software GraphViz
(http://www.graphviz.org/): ordered_dependency, hierarchical_dependency and the
general graph visualization. To use these, install GraphViz on the server (or your local
machine for Kickstarter) and make sure it is available in your system path (check this
by calling e.g. the program dot on the command line).
 Another type of restriction is that some visualizers may use SVG (scalable
vector graphics) instead of images, which means the user’s browser must be SVG
capable (e.g. Firefox, Chrome, or IE9 or above) or else a plugin must be used (e.g. for
Internet Explorer 8 or below). This is currently the case for the arch_dependency
visualizer.

5.3 Changing maximal context size, context steps and result page sizes

The maximal context size of ±n tokens from each search result (for the KWIC view,
but also for other visualizations) can be set for the ANNIS service in the file

<service-home>/conf/annis-service.properties

Using the syntax, e.g. for a maximum context of 10 tokens:

annis.max-context=10

To configure which steps are actually shown in the front-end (up to the maximum
allowed by the service above) and the default context selected on login, edit the setting

annis.max-context in the annis-service.properties. By default, the context
steps 1, 2, 5 or 10 tokens are available. To change the default step and step increment,

edit the parameters default-context=5 and context-steps=5 respectively.

It is also possible to set context sizes individually per corpus. This is done by editing or

adding the file corpus.properties to the folder ExtData within the relANNIS corpus

folder before import. The names of the parameters are the same, i.e. default-

context=5 and context-steps, and their values override the default values in annis-

service.properties.

To change the available setting for the amount of hits per result page, edit the setting

results-per-page in annis-service.properties as explained above for all

corpora, or for specific corpora in corpus.properties within the relevant corpus.

Note that for all these setting, if multiple corpora with conflicting instructions are
selected, the interface will revert to system defaults up to the most restrictive settings
imposed by one of the selected corpora (i.e. if one of the selected corpora limits
context to ±5 tokens, the search will obey this limit even if other corpora and the
default setting allow more context).

28

6 Importing and Configuring Corpora

6.1 Converting Corpora for ANNIS using SaltNPepper

ANNIS uses a relational database format called relANNIS. The Pepper converter
framework allows users to convert data from various formats including PAULA XML,
EXMARaLDA XML, TigerXML, CoNLL, RSTTool, generic XML and TreeTagger
directly into relANNIS. Further formats (including Tiger XML with secondary edges,
mmax2) can be converted first into PAULA XML and then into relANNIS using the
converters found on the ANNIS downloads page.

For complete information on converting corpora with SaltNPepper see:
http://korpling.german.hu-berlin.de/saltnpepper/

6.2 Importing Corpora in the relANNIS format

Corpora in the relANNIS format can be imported into the ANNIS database. For
information on converting corpora from other formats into relANNIS, see the links in
Section 6.

Importing a relANNIS Corpus in ANNIS Kickstarter

To import a corpus to your local Kickstarter, press the “Import Corpus” button on the
Kickstarter program window and navigate to the directory containing the relANNIS
directory of your corpus. Select this directory (but do not go into it) and press OK.
Note that you cannot import a second corpus with the same name into the system: the
first corpus must be deleted before a new one with the same name is imported.

Importing a relANNIS Corpus into an ANNIS Server

Follow the steps described in Section 3.2 for importing the demo corpus pcc2. Multiple
corpora can be imported with annis-admin.sh by supplying a space-separated list of
paths to relANNIS folders after the import command:

bin/annis-admin.sh import path1 path2 ...

6.3 Configuring Settings for a Corpus

Generating Example Queries

User created example queries are stored in the file example_queries.tab within the
relANNIS corpus folder. The file contains two columns (tab delimited), the first with a
valid AQL query for your corpus and the second with a human readable description of
the query. These queries are the then visible in Example Queries tab of the workspace
on the right side of the ANNIS interface.

It is also possible to have ANNIS automatically generate queries for a corpus (instead
of, or in addition to user created examples). ANNIS will then create some randomized,
typical queries, such as searches for a word form appearing in the corpus or a regular
expression. To determine whether or not example queries are generated by default,

change the following setting in annis-service.properties:

29

annis.import.example-queries=false

On an ANNIS server console it is also possible to generate new example queries on
demand, replacing or adding to existing queries, and to delete queries for individual
corpora. For more information on the exact commands and options see the help under:

bin/annis-admin.sh --help

Setting Default Context and Segmentations

In corpora with multiple segmentations, such as historical corpora with conflicting
diplomatic and normalized word form layers, it is possible to choose the default
segmentation for both search context and the KWIC visualization. To set the relevant

segmentations, use the following settings in the corpus.properties file in the folder
ExtData within the relANNIS corpus:

default-context-segmentation=SEGNAME
default-base-text-segmentation=SEGNAME

For more details on segmentations, see the ANNIS Multiple Segmentation Corpora
Guide.

6.4 Multiple Instances of the Interface

Creating instances

When multiple corpora from different sources are hosted on one server, it is often still
desired to group the corpora by their origin and present them differently. You should
not be forced to have an ANNIS frontend and service installation for each of these
groups. Instead the administrator can define so called instances.

An instance is defined by a JSON file inside the instances sub-folder in one of the
configuration locations, e.g. the home folder of the user running the ANNIS service (or

under Windows Kickstarter, in C:\Users\username\.annis, or under Mac OSX

under /Users/username/.annis/, which is a hidden folder; to view hidden folders
you may need to reconfigure your Finder application). The name of the file also

defines the instance name. Thus the file instances/falko.json defines the instance
named "falko".

{

 "display-name": "Falko",

 "default-querybuilder": "tigersearch",

 "default-corpusset": "falko-essays",

 "corpus-sets": [

 {

 "name": "falko-essays",

 "corpus": [

 "falko-essay-l1",

 "falko-essay-l2"

]

30

 },

 {

 "name": "falko-summaries",

 "corpus": [

 "falko-summary-l1",

 "falko-summary-l2"

]

 }

]

}

Each instance configuration can have a verbose display-name which is displayed in the

title of the browser window. default-querybuilder defines the short name of the
query builder you want to use. By default "tigersearch" is available; if you want to add
your own query builder, see http://korpling.github.io/ANNIS/dev-querybuilder.html.

Any defined instance is assigned a special URL at which it can be accessed:
http://<server>/<instance-name>. The default instance is additionally accessible by not
specifying any instance name in the URL. You can configure your web server (e.g.
Apache) to rewrite the URLs if you need a more project specific and less "technical"
URL (e.g. http://<server>/falko).

Using Corpus Groups

It is possible to group corpora into groups, which are selected above the corpus list in
the search form:

While any user can group corpora into corpus sets for their own use, you can define
corpus sets for the whole instance using the "corpus-sets" in the JSON file described
above. Each corpus set is itself a JSON-object with a name and a list of corpora that
belong to the corpus set.

6.5 User management

ANNIS has an authentication system which allows to handle multiple users which will
see different corpora depending on which groups the user is part of. Behind the scenes
ANNIS uses the Apache Shiro security framework. Per default ANNIS uses a file
based authentication and authorization approach where some configuration files with
an ANNIS specific layout are evaluated. This section will discuss how to manage this
configuration. Additionally, the adminstrator can also directly adjust the contents of the
conf/ shiro.ini configuration file. This allows a much more individual configuration
and the usage of external authorization services like LDAP.

31

There is a central location where the user configuration files are stored. Configure the
path to this location in the conf/shiro.info configuration file of the ANNIS service. The
default path is /etc/annis/user_config_trunk/ and must be changed at two locations in
the configuration file.

[main]

annisRealm = annis.security.ANNISUserRealm

annisRealm.resourcePath=/etc/annis/user_config_trunk/

annisRealm.authenticationCachingEnabled = true

globalPermResolver =

annis.security.ANNISRolePermissionResolver

globalPermResolver.resourcePath =

/etc/annis/user_config_trunk/

1. Create a file "groups" in the user-configuration directory (e.g.

/etc/annis/user_config_trunk/groups):

group1=pcc3,falko,tiger2

group2=pcc3

group3=tiger1

demo=pcc2,falko

This example means that a member of group group1 will have access to corpora with
the names pcc3,falko, tiger2 (corpus names can be displayed with the annis-admin.sh
list command).

2. Create a subdirectory users/

3. You have to create a file for each user inside the users subdirectory where the user's

name is exactly the file name (no file endings).

groups=group1,group3

password=$shiro1$SHA-

256$1$tQNwUIxEQhrDn6FKcY1yNg==$Xq8ZCb3RFBwn3GfQ7pav3G3vHg4T

KRGD1ItpfdW+JvI=

given_name=userGivenName

surname=userSurname

Notes:

• A superuser who has access to every corpus can be created with groups=*

• given_name and surname can contain any string

• The password must be hashed with SHA256 (one iteration and using a Salt) and
formatted in the Shiro1CryptFormat.

• The easiest way to generate the passwort hash is to use the Apache Shiro
command line hasher (http://shiro.apache.org/command-line-hasher.html)
which can be downloaded from:
http://shiro.apache.org/download.html#Download-1.2.1.BinaryDistribution .

32

o Execute java -jar shiro-tools-hasher-1.2.1-cli.jar -i 1 -p from the
command line (the jar-file must be in the working directory)

o Type the password
o Retype the password
o It will produce the following output:

$ java -jar shiro-tools-hasher-1.2.1-cli.jar -i 1 -p

Password to hash:

Password to hash (confirm):

$shiro1$SHA-

256$1$kRMX+Et6w7XJgwSEAgq9nw==$sQOgObXsQdO76wnNxvN0aesvTSPo

Bsd/2bjxasydB+I=

The last line is what you have to insert into the password field.

