ORIGINAL ARTICLE

Wood anatomy of major Bignoniaceae clades

Marcelo R. Pace · Lúcia G. Lohmann · Richard G. Olmstead · Veronica Angyalossy

Received: 24 March 2014/Accepted: 7 July 2014 © Springer-Verlag Wien 2014

Abstract The circumscription of Bignoniaceae genera and tribes has undergone major changes following an increased understanding of phylogenetic relationships within the family. While DNA sequence data have repeatedly reconstructed major clades within the family, some of the clades recovered still lack diagnostic morphoanatomical features, complicating their recognition. In this study we investigated the wood anatomy of all major lineages of Bignoniaceae (except Tourrettieae) in search for anatomical synapomorphies for clades. We sampled 158 species of Bignoniaceae, representing 67 out of the 82 genera currently recognized. Detailed descriptions of quantitative and qualitative wood anatomical features are presented for each clade and interpreted in the light of a molecular phylogeny for the family. Jacarandae are characterized by a paratracheal winged-aliform parenchyma, with the traditional subdivision of Jacaranda into sections Monolobos and Dilobos supported by the uniseriate and homocellular rays of Monolobos versus the wide and heterocellular rays of Dilobos. Tecomeae s.s. are characterized by scanty paratracheal parenchyma, septate fibers, and heterocellular rays, traits also found in Delostoma, a genus previously included in Tecomeae s.l., but recently shown to represent a separate lineage. Crescentiina includes two subclades, the Tabebuia alliance and the Paleotropical clade, which share abundant aliform parenchyma, short and

M. R. Pace (🖂) · L. G. Lohmann · V. Angyalossy Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, Cidade Universitária, CEP 05508-090 São Paulo, SP, Brazil e-mail: marcelorpace@yahoo.com.br; marcelorpace@usp.br

R. G. Olmstead Department of Biology, University of Washington, Seattle, WA 98195, USA mainly homocellular rays, less commonly with heterocellular rays with body procumbent and one row of marginal square cells. Members of the Tabebuia alliance and the Paleotropical clade can be distinguished from each other by the narrow vessels with a widespread storied structure found in members of the Tabebuia alliance, versus the vessels with medium to wide width and a non-storied structure found in members of the Paleotropical clade. Oroxyleae are characterized by a combination of simple and foraminate perforation plates and homocellular rays, while Catalpeae are characterized by scanty paratracheal parenchyma, abundant tyloses and vessel-ray pits simple to semi-bordered. Bignonieae differ from all other clades by a variant secondary growth and a typically lianoid wood anatomy. Overall, wood anatomical characters are not very labile within the family, being distributed across clades in a very predictive manner. Several anatomical characters represent good anatomical synapomorphies and provide further support to clades identified in molecular phylogenetic studies.

Keywords *Tabebuia* alliance · Coleeae · Bignonieae · Diversity · Liana · Secondary xylem · Neotropics · Paleotropics

Introduction

Bignoniaceae are a family of woody plants with approximately 860 species and 82 genera (Lohmann and Ulloa 2006 onwards). Most species are trees and lianas, although some members are shrubs and herbs (Gentry 1980; Lohmann 2004; Fischer et al. 2004; Olmstead et al. 2009). The family is pantropical and centered in tropical South America (Lohmann 2004; Fischer et al. 2004; Olmstead et al. 2009; Olmstead 2013), with only a few genera reaching temperate climates (*Campsis*, *Catalpa*) or high mountains (*Argylia* in the Andes and *Incarvillea* in the Himalayas; Olmstead et al. 2009). Members of Bignoniaceae are generally recognizable by a woody habit, compound opposite leaves, tubular, zygomorphic and showy flowers, four didynamous stamens plus one staminode, and bi-valved dry capsular fruits (Gentry 1980; Lohmann 2004; Olmstead et al. 2009).

In the most recent angiosperm classifications, Bignoniaceae are placed in the order Lamiales (APG II 2003; APG III 2009), within which the family forms a well-supported lineage that is sister to a clade composed of Lamiaceae, Orobanchaceae, Rehmanniaceae, Paulowniaceae, Phrymaceae, Mazaceae, Verbenaceae, Thomandersiaceae, Lentibulariaceae and Schlegeliaceae (Refulio-Rodriguez and Olmstead 2014). Gentry (1980) recognized eight tribes in the family based on habit, fruit dehiscence, and geographical distribution: Bignonieae, Coleeae, Crescentieae, Eccremocarpeae, Oroxyleae, Tecomeae, Tourrettieae, and Schlegelieae (Gentry 1980, 1992; Fischer et al. 2004). However, Schlegelieae were shown to be distantly related from the rest of the family (Spangler and Olmstead 1999; Refulio-Rodriguez and Olmstead 2014) and were subsequently segregated into Schelegeliaceae Reveal. More recently, molecular phylogenetic studies (Spangler and Olmstead 1999; Zjhra et al. 2004; Olmstead et al. 2009) have indicated that some tribes were not monophyletic as traditionally circumscribed, suggesting that nine major clades should be recognized instead. Of these nine clades, two correspond to tribes previously recognized under Gentry's system (1980), i.e., Bignonieae and Oroxyleae. Two other tribes previously recognized under Gentry's system (1980), Crescentieae and Coleeae (minus Kigelia), also emerged as monophyletic but nested within more inclusive clades; Crescentieae emerged within the Neotropical Tabebuia alliance clade (Grose and Olmstead 2007a), and Coleeae emerged within the Paleotropical clade (Fig. 1; Zjhra et al. 2004; Olmstead et al. 2009). The large tribe Tecomeae, on the other hand, appeared scattered within six different clades: Catalpeae, the Tabebuia alliance, the Paleotropical clade, Delostoma, Tecomeae s.s., and Jacarandeae. While these clades are well supported by molecular characters, additional diagnostic morphological and anatomical traits are still desirable to characterize them. Indeed, Olmstead et al. (2009, page 1735) noted that: "Several of the large, prominent clades identified in this study lack evident diagnostic traits".

Stem anatomy is one of the most informative sources of diagnostic characters for Bignoniaceae. The wood anatomy of Bignoniaceae has been well studied, since the wood of several species are highly valuable, including that of *Handroanthus* (formerly included in a larger *Tabebuia*;

Grose and Olmstead 2007a, b), Tabebuia, Paratecoma, and Jacaranda (Record and Hess 1943; Chudnoff 1984; Dos Santos and Miller 1992, 1997). In addition, the lianas have called the attention of researchers because of the presence of a conspicuous type of cambial variant in their stems, with the formation of four, or multiples of four, phloem wedges that furrow the xylem, giving the stem an unmistakable cross-like shape in transverse section (Schenck 1893; Dobbins 1971; Dos Santos 1995; Pace et al. 2009; Angyalossy et al. 2012). Systematic wood anatomical studies were also successful in sorting lineages within the family. In the large genus Jacaranda, wood anatomical studies found differences between Jacaranda section Monolobos and Dilobos, with Jacaranda section Monolobos exhibiting uniseriate, homocellular rays only and Jacaranda section Dilobos exhibiting wide, heterocellular rays (Dos Santos and Miller 1997). The recent division of Tabebuia into three different genera (Grose and Olmstead 2007a, b), Handroanthus, Tabebuia, and Roseodendron matches perfectly a division long known by wood anatomists that divided Tabebuia s.l. in different groups, those of light woods, those of heavy woods, and some species that did not fit in one of these two major groups (Record and Hess 1943; Chudnoff 1984; Dos Santos and Miller 1992). In fact, the light woods are now recognized as Tabebuia s.s., the heavy woods with lapachol obstructing the vessels of the heartwood are now recognized as Handroanthus, and the wood anatomically unusual species are now recognized as Roseodendron (Grose and Olmstead 2007b). Given the importance of wood anatomical characters in the Bignoniaceae, our study aims to: i) describe the wood anatomy of all major woody clades of Bignoniaceae based in the new systematic arrangement of the family and, ii) search for commonalities on the wood anatomy and character that could represent anatomical synapomorphies of the clades delimited in phylogenetic studies of the family.

Materials and methods

Sampling

Altogether 158 species were sampled, belonging to 67 out of the 82 genera currently recognized in Bignoniaceae, and representing all major clades (Olmstead et al. 2009). Only Tourrettieae, a tribe of two monotypic genera of slenderstemmed vines from the Andes were not sampled. In most cases, two to three specimens were sampled per species. A complete list of species and specimens sampled, collecting numbers, and sampling localities are presented in "Appendix". Wood anatomical characters of the majority of arborescent and shrubby species were obtained from slides deposited at the Forest Products Laboratory Slide Collection (MADw and SJRw; Madison, Wisconsin, USA), with additional species/specimens from Calvino Mainieri Wood Collection (BCTw; São Paulo, Brazil). Anatomical characters from lianas were obtained from our private slide collection, which was prepared from specimens collected in natural populations or from the living collection of Plantarum Institute and Botanical Garden (Appendix 1). Samples were fixed in FAA 50–70 (50–70 % ethanol-formaldehyde-acetic acid; Berlyn and Miksche 1976) for a week, and subsequently stored in a solution of 50 % ethanol.

Anatomical procedures

Section for our slide collection was prepared according to Barbosa et al. (2010), following double staining in Astra Blue and Safranine (Bukatsch 1972) and mounted in a synthetic resin to obtain permanent slides. Scanning electron microscopy was done with thick sections of wood (ca. 1 mm), submitted to dehydration with acetone, placed on aluminium stubs, sputter-coated with gold, and subsequently analysed in a scanning electron microscope.

Wood description

Anatomical descriptions followed the IAWA list of microscopic features (IAWA Committee 1989) as a starting point, adjusting to the specificities of the Bignoniaceae according to the wood anatomical diversity encountered. Measurements of vessel grouping followed Carlquist (2001). Semi-ring to ring-porous woods have their earlywood and latewood measured separately, since vessels in latewood usually had a different grouping arrangement. In woods with vessels of two width classes (lianas and plants with ring-porous or semi-ring porous woods), both the wide and the narrow vessels were measure and their values expressed separately. All characters and character states examined are presented in Table 1. Measurements were performed using the free software ImageJ (ver. 1.45 s; Rasband 2012), with a minimum of 30 repetitions per specimen. Parameters for all types of xylem cells were measured, including vessel and axial parenchyma frequency, vessel diameter, number of vessels per group, axial parenchyma area, intervessel pit size, ray width and height. Quantitative results are presented as averages accompanied by their standard deviations.

Results

Some wood anatomical traits are common to most, if not all, species of Bignoniaceae. Most arborescent

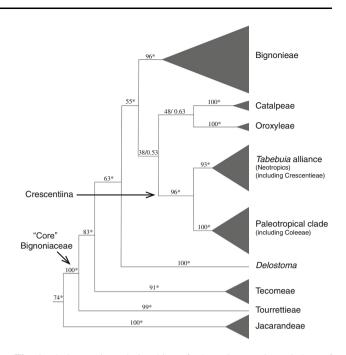


Fig. 1 Phylogenetic relationship of the nine major clades of Bignoniaceae as proposed by Olmstead et al. (2009). *Number above branches* represent bootstrap support, followed by posterior probabilities (recovered from Olmstead et al. 2009); *Asterisk* indicates 100 % posterior probabilities

Bignoniaceae have diffuse porous woods (Fig. 2a), except for the species growing in subtropical and temperate regions, which are semi-ring porous (Fig. 2b) to ring-porous. Most lianas, on the other hand, have semi-ring porous woods (Fig. 2c). Growth rings are typically delimited by a line or band of marginal parenchyma (Fig. 2a, b), thickwalled and radially flattened fibers (Fig. 2c) and occasionally ray dilatation at the limits of the growth rings (Fig. 2c). Many species also have very narrow vessels associated with the marginal parenchyma (Fig. 2a). Vessel dimorphism (the association of very wide and very narrow vessels) is widespread in the lianas (Fig. 2c). Tyloses on the heartwood are only rarely encountered, but common in Catalpaeae (Fig. 2b), Spathodea campanulata, and occasionally sparsely present in the woods of other species, including the lianas. Most Bignoniaceae have a straight grain (Fig. 2d), but the grain may sometimes be wavy (Fig. 2e) or interlocked (as in some specimens of Handroanthus). Axial parenchyma is paratracheal (Fig. 2a-c), varying from scarce (Fig. 2c) to abundant (Fig. 2b), with confluences forming bands. Crystals are common in the family and generally confined to ray cells (Fig. 2i), silica is absent (except in Pachyptera kerere). All qualitative and quantitative traits analyzed are presented in Table 1, while a summary of the most conspicuous features is given in Table 2. Below we characterize the wood anatomy of each major clade of the Bignoniaceae currently recognized (Olmstead et al. 2009; Fig. 1).

Table 1 Analyzed species, habit, xylem characters and climate of occurrence

Type of Climate of cambial occurrence variant	NA Tropical	NA Tropical	NA Tropical	NA Tropical	NA Tropical	NA Tropical	Perimedullar Temperate phloem	NA Tropical	NA Tropical	NA Tropical	NA Subtropical (Montane)	NA Subtropical (Montane)	NA Temperate (Montane)	NA Tropical	NA Subtropical	NA Tropical	NA Subtropical	NA, Tropical	NA Tropical	NA Temperate	NA Subtropical	NA Temperate	
ated Crystals		Present in rays	Present in rays		,						•		Present in rays	Present in rays		•	Present in rays				Present in rays	,	
Vessel-ray Septate Perforated pitting fibers ray cells	Similar to intervessel - pits	Similar to Intervessel ofts	Similar to Intervessel oits	Similar to Intervessel otts	Similar to Intervessel pits	Similar to intervessel pits	Similar to intervessel + +	Similar to intervessel -+ -	Similar to intervessel + ? pits	Similar to intervessel + +	Similar to intervessel pits	Similar to Intervessel pits	Similar to intervessel + pits	Similar to Intervessel + ? pits	Similar to Intervessel + +	Similar to intervessel pits	Similar to intervessel + pits	Similar to intervessel pits	Similar to intervessel +	Simple to semi- semi- bordered	Simple to + bordered	Simple to somi- bordened	Simple to
Rays: cellular Ve. composition p	Homo and Si hetero with 1 inb row of square		Homocellular to Si sightly inth heterocellular	S Homocellular int			Heterocellular Si with 2-4 inth square/upright marginal cells						Heterocefular Si with 2-4 int square/upright marginal cells		Heterocellular Si mixed	Si Homocellular intr	Homo and Si hetero with 1 into row of square cells	Si Homocellular int	Si Homooellular int	Homo and Si hetero with 1 Si row of square bo cells			cells Homo and SI
Ray R height c	Short <1 h	Short <1	Short <1 H	Short <1	T Short <1	Short Short I	Short <1 H	Short <1 h	Hgh>1 mm	Short <1 H	Short <1	Short <1	Short Short I	High >1 High	Short <1 H	Short <1	Short <1 h	Short <1	Short <1	Short <1 P	Short <1 P	Short <1 mm	
Ray width In number of cells	2±1	1±1	3±1	1±0	3±1	3±0	3±1	2±1	3±1	2±0	2±0	2±1	2±0	ė	2±0	3±0	3±1	3±0	3±0	3±1	3±1	3±1	
Ē	ć	20±5	30±4	ć	24±4	~	26±6	27±6	32 ± 9	19±4	c	¢	21±7	6	21±3	33 ± 7	33 ± 6	34 ± 6	30±6	26±3	32±6	25±5	
Parenchyma Storied strands structure	Four (3-4) cells per strand	Four (3-4) cells per strand	Eight (5-8) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Eight (5-8) cells per strand	Eight (5-8) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) celts per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	: ; ;
Diffuse parenchyma					,			•											•				
Axial parenchyma cell mean area pi (µm2)	ć	313 ± 152	685 ± 133	i	278 ± 77	0	192 ± 87	351±113	80±32	103 ± 38	¢	¢.	338 ± 132	ć	106 ± 40	374 ± 114	268 ± 62	221±105	359 ± 44	246±65	388±231	557 ± 311	
Axial parenchyma c frequency	6	10%	15	¢-	8	¢-	×2	4%	3%	4%	e-	¢	×2	0.	0.5%	52	1%	16	10%	8	2	82	
Confluence p	Short	Long. forming hands	Long. forming bands	Long. forming bands	Short	Short	Absent	Long. forming bands	Absent	Absent	Absent	Absent	At short sectors	Absent	Absent	Long. forming bands	Absent	Short	Short	Absent	Short	Absent	
Patratracheal c	Alform	Aliform	Alform	Aiform	Alform	Alform	Scanty	Alform	Scanty	Scanty	Scanty	Scanty	Vasioentric	Scanty	Scanty	Vasicentric	Scanty	Vasioentric	Alform	Scanty	Aliform	Vasicentric	
Helical P thickening p							+			·			+									+	
Intervessel Helical pit size (µm) thickening	ć	72±2	8.4±4	10.9±2	10.3±2	10.2±3	82±1	9.4 ± 3	~	62±3	¢-	¢.	4.3±1	ć	56±4	9.0±2	4.0±1	3.1±3	53±2	11.1 ± 3	63±4	7.3 ±2	
Perforation	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Reficulate or foraminate plate present	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Reficulate or foraminate plate present	Reticulate or foraminate plate present	Simple	Simple	Simple	
or ow Tyloses els									. 9		•	•	•							*	•	+ 23	
Vessel diameter mean Wide Narrow vessels vessels (µm) (µm)	? NA	68±7 NA	300±40 NA	? NA	75±8 NA	? NA	158±36 26±6	125±42 NA	83±14 14±5	66±18 19±7	2 NA	? NA	73±13 NA	? NA	30±4 NA	70±23 NA	70±12 NA	80±26 NA	179±18 NA	204±17 32±8	131±10 NA	200±36 26±7	
Vessel — frequency (per mm2) v	¢	10±8	3±5 3	¢	21±10	~	320±91 1	6±5	165 ± 17 8	126±20 6	e-	0	28±11 7	e-	142 ± 38	28±11 7	46±20 7	27±8 8	4±4	10±3 2	6±4 1	14±11 2	
Vessel dimorphism							+		+	÷				+									
Vessels/group	2.11 ± 1.22	1.64 ± 0.29	1.23 ± 0.23	1.37 ± 0.30	2.09 ± 0.20	ć	5.32 ± 0.51	1.34 ± 0.35	2.22 ± 0.58	2.64 ± 0.35	¢	~	2.08 ± 0.53	ć	1.93 ± 0.40	2.26 ± 0.65	2.93 ± 1.21	1.94 ± 0.30	1.24 ± 0.31	SV 1.40 ± 0.22 N 13.90 ± 3.18	1.56 ± 0.36	EW 1.33 ± 0.18 M 24.63 ± 9.68	92.0 - 00 C MC
Vessel grouping	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3		Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-4 or more, radially	urspuseu Solitary to multiples of 2-3	Solitary to Radial pattern & Radial multiples	Solitary to multiples of 2-3	Solitary to 1.24 ± 0.31 multiples of 2.3	Solitary to EW 1.40 ± 0.22 multiples of 2-3 LW 13.90 ± 3.18	Solitary to 1.56 ± 0.36 multiples of 2-3	Solitary to EW 1.33 ± 0.18 multiples of 2-3 LW 24.63 ± 9.68	
Vessel rangement	Diffuse	Diffuse	Diffuse	Diñuse	Diñuse	Diffuse	Difuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diñuse	Diñuse	Diffuse	Tangential bands r	adial pattern	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	
irowth ring marker: flattened ar fibers	•		•		+			+	+	•		٠		~			<u>α</u> 2	+	+			+	
Growth ring Growth ring Growth ring marker: Vessel marker: Wessel tatkened arrangement parenchyma rays fibers					+	+					,			e.		•			+		,	,	
Browth ring marker: n. 3renchyma	+	÷		+	+	+			+	·	+		+	0.		÷	+	+	+	+	+		
G Porosity G	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Porous	Diffuse	Semi-ring porous	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Semi-ring porous	Diffuse	Diffuse	Diffuse	Semi-ring porous	Diffuse	Semi-ring porous	
Habit	Tree	Tree	Tree	Tree	Tree	Tree	Liana	Tree	Liana	Liana	Tree	Tree	Tree	Liana	Shrub/Lian a	Tree	Tree	Tree	Tree	Tree	Tree	Tree	
Species	Digomphie densicoms	Jacaranda brasiliana	Jacaranda copala	Jacaranda obtusifolia	Jacaranda puberule	dacaranda uloi	Campsis radicans	Deplanchea bancana	Pandorea jasminoides	Podranea ricasoliana	Tecoma cochabambensis	Tecoma fulva	Tecoma stans	Tecomanthe dendrophile	Tecomaria capensis	Tecorneli's undulates	Delostoma infegrifolia	Milingtonia frotensis	Oroxylum indicum	Catalos bignonioides	Catalpa longissima	Catalpa speciosa	
Tribe or clade	4	4	Ŷ	JACARANDEAE	Ŷ	Ŷ	0	Q	a,	d.	TECONERE		Ц	й	д	Т	DELOSTOMA	W		3		CATALPEAE	

Climate of occurrence	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Temperate	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical
Type of cambial variant	Four phloem wedges	Four phicem wedges	Multiple of four phloem wedges	Four phicem wedges	Four phicem wedges	Four phloem wedges	Four phloem wedges	Four phicem wedges	Included phioem wedges	Included phloem wedges	Included phloem wedges	Included phloem wedges	Included phloem wedges	ultiple of four phloem wedges	ultiple of four phloem wedges	ultiple of four phloem	ultiple of four phloem wedges	Multiple of four phloem wedges	Four phloem wedges	Four phicem wedges	Four phicem wedges	Multiple dissected phloem wedges	Multiple dissected phloem
Crystals			Present in rays	+		с.								w .		w ć	× .						
Perforated c	+	+	e.	÷	0-	e-	r-	÷	+	+	÷	+	+	e-	+	+		+	+		+		+
Septate fibers	+	+		÷	e-	0-	e-	+	+	+	÷	+	+	÷	+	e	÷	+	+	+		+	+
Vessel-ray pitting	Simple to semi- bordered	Simple to semi- bordered	Simple to semi- bordered	Simple to semi- bordered	Simple to semi- bordered	Simple to semi- bordered	Simple to semi- bordered	Simple to semi- bordered	Similar to intervessel pits	Similar to intervessel pits	Similar to intervessel	Similar to Intervessel	Similar to intervessel pits	Similar to intervessel pits	Simple to semi- bordered	Simple to semi- bordered	Similar to intervessel pits	Similar to intervessel					
Rays: cellular composition	Heteroceilular mixed	Heterocellular mixed	Heterocellular mixed	Heterocellular mixed	Heterocellular mixed	0	Heterocellular mixed	Heterocellular mixed	Heterooellular mixed	Heterocellular mixed	Heterocellular mixed	Heterocellular mixed	Heterocellular mixed	Heterocellular mixed	Heterocellular mixed	Heterocellular mixed	Heteroollular mixed	Heterocellular mixed	Heterocellular mixed	Heterocellular mixed	Heterocellular mixed	Horno and hetero with 1 row of square cells	
Ray Ra; height co	Hgh>1 He mm	High >1 He mm	High >1 He mm	Hgh>1 He mm	High >1 He	~	Hgh>1 He mm	High >1 He mm	Hgh>1 He mm	High >1 He mm	Hgh>1 He mm	High >1 He mm	High >1 He mm	High >1 He mm	High >1 He mm	Short <1 He mm	Hgh>1 He mm	Hgh>1 He mm	Short <1 He	Short <1 He mm	, He	Short <1 ha	Short <1 he
alls	3±1	3±1	4 ± 1	3±1	2±1	~	2±1	4±1	9±3	6±2	¢.	5±1	8±2	2±1	5±3	4 + + -	3±1	+++	4 1 1	1±0	4±1	1±0	
Ray In µm	¢.	41 ± 11	30 ± 6	e-	0-	0-	c-	¢	42 ± 3	0	0	~	0	20±9	~	0	19±5	~	e-	18±3	0	20±5	
Storied structure	~								+	+	٠	+	+	·				•			•	•	+
Parenchyma strands	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	0-	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Eight (5-8) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand
Axial Diffuse parenchyma Diffuse cell mean area parenchyma (µm2)	¢	171 ± 53	62 ± 22	¢.	~	~	c-	0	185 ± 65	e-	0	c	0	111±44	~	¢	200 ± 66	155 ± 35	0-	113 ± 37	~	128 ± 21	
Axial parenchyma F frequency ce	¢	4%	1%	~	~	~	e-	¢.	959	e-	0	e-	0	3%	~	ć	2%	1%	0	1%	~	4%	
Confluence p	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Short	Absent	Absent	Absent	Absent
ratracheal Co	Scanty	Scanty	Scanty	Scanty	Scanty	Scanty	Scanty	Scanty	Scanty	Scanty	Scanty	Scanty	Scanty to vasicentric	Scanty	Scanty	Scanty	Scanty	Scanty	Vasioentric	Scanty	Scanty	Scanty	Scanty
felical Pat ckening pa																+							
tervessel :size (µm) th	i	11.2 ± 3	6.4 ± 1	¢	~	~	~	ć	5.2 ±2	~	~	~	¢	5.2 ± 2	~	~	5.6 ± 3	7.2 ±1	ć	4.2 ± 1	~	5.3 ± 2	
Perforation Intervessel Helical Patratracheal plate pit size (µm) thickening parenchyma	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple
Tyloses P																							
Vessel diameter mean Wide Narrow vessels vessels (µm) (µm)	i	26±10	12±4	¢	¢	~	~	ć	33±9	i	ć	~	ć	19±8	٢	i	28±8	27±8	ć	NA	19±6	16±9	
	ė	10 137 ± 28	32 70±15	ć	¢	0	e-	~	96 293±60	~	~	r.	ć	61 106±16	~	0	22 137±15	25 156±29	ć	17 45±10	74 ± 22	47 111 ± 23	•
I Vessel frequency iism (per mm2)	ć	45 ± 10	236 ± 32	¢	¢	0	ć	ć	98 ± 36	ć	ć	ć	¢	122 ± 61	ć	¢	131 ± 22	48 ± 25	ć	28±17	¢	140 ± 47	
up Vessel dimorphism	+	+	+	+				+	+	+	*	+	+	*	+	+	*	+	+		+	+	+
Vessels/group	¢.	1.52 ± 0.28	1.37 ± 0.47	0-	~	~	0-	0	4.73 ± 3.25	0	0	0-	1.55 ± 0.59	2.46 ± 1.06	2.31 ± 0.25	¢	3.55 ± 0.44	2.40 ± 0.87	1.90 ± 0.56	1.80 ± 0.31	0	2.13 ± 0.52	1.32 ± 0.25
Vessel grouping	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary (wide vessels)	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary (wide vessels)	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Soltary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary (wide vessels)	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary (wide vessels)	Solitary (wide vessels)
Vessel arrangement	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse
Growth ring marker: filattened filbers	+	+	÷	÷				÷	+	+	٠	NA	+	÷	c	+	÷	+	+	+		÷	+
rowth ring rker.dilated rays		+	÷					÷	÷			NA					÷	+					
owth ring G narker: ma enchyma	+	+	÷	÷				÷	÷	+	÷	NA	+		,	+		+	+	+	+	÷	+
Growth ring Growth ring Growth ring Wessel marker: marker:dialaded fattened arrangement parenchyma rzys fibers	Semi-ring porous	Diñuse	Semi-ring porous	Semi-ring porous	Diffuse	Diffuse	Diffuse	Semi-ring porous	Semi-ring porous	Semi-ring porous	Semi-ring porous	Growth ring absent	Diñuse	Diffuse	Diffuse	Porous	Diffuse	Diffuse	Diñuse	Diffuse	Diñuse	Diffuse	Diñuse
Habit Po	Liana Se p	Liana D	Liana Se	Liana Se		Shrub D		Liana Se p	Liana Se	Liana Se p	Liana Se	Liana Gro a	Liana D	Liana D	Liana D	Liana P	Liana D	Liana D	Liana D	Shrub	Liana D	Liana D	Liana D
					offewiotum		negrinum																
Species	Adenocalymma bracfeatum	Adenocalymma comosum	Adenocalymma divaricatum	Adenocalymma flavitiorum	Adenocalymma neoflavidum Shrub	Adenocalymma nodosum	Adenocalymma peregrinum Strub	Adenocalymma salmoneum	Amphilophium crucigerum	Amphilophium elongatum	Amphilophium magnolifolium	Amphilophium paniculatum	Amphilophium pulverulentum	Anemopaegma chamberlaynű	Bignonia campanulata	Bignonia capreolata	Bignonia magnifica	Bignonia prieurei	Callichlamys latifolia	Cuspidaria pulchra	Cuspidaria convoluta	Dolichandra unguis-cati	Dolichandra quadrivalvis
Tribe or clade	¥	A	A	A	A	¥	A	¥	A	A	ΚE	BIGNONIEAE	< ₫	4.2	83	8	g	83	0	U	0	a	Q

Table 1 continued

 $\underline{\textcircled{O}}$ Springer

Table 1 continued

Vested meanset Vested mean Vested Mean Ve		Smiple 6/1±3 Samity Absent 1% 1/1±72 Egit(\$-8)olds 10±5 1±1 Hg)a-1 Helecondus Smith Amment of the second	Simple ? Vascentic Stort ? ? Epit661obs ? 3_1 Stort Heenoceblar Simple & Fourphien perdand ? 3_1 mm minal Simple worked works	Single 9.0.±1 Valacentic Stort 7% 88.±23 Four 0-41.oils 3.±5 3.±1 Historooldar Smallzto Four Polyan perstand 3.±5 3.±1 Historooldar Smallzto Four Four Polyan Manuel 4.5 wedges		7 Santy Abovet 7 7 Eur (3-4) ratis 7 3 ± 1 High Aboved Smitch 6 1 Proceed Smitch 6 1 Proceed Smitch 6 1 Proceed 1 Proceed 1 + 1 Proceed 1 Procee	Similar to Intervessel + + -	Similar to intervessel + +	pus Scandy Absent 1%, 154±45 Four[34]totts 57±18 4±1 High?l Helmcondust Sintaris persond 57±18 4±1 mm mixed intervesional +	Scardy Acted 7 7 Four (34) olds 7 High 24 Hearcoddar Shifte D Marghed Marghed Marghed Acted 7 High 24 Hearcoddar Shifte D Marghed 4 Marghed 4 Acted 7 mm made Acte	7 3±1 High >1 HearcockLar Smiler to man mixed intervessel + + mm mixed ois	+ +	•	Scarity Absent 3% 127.±45 Four 24/ealls 28.±5 3.±0 Stort-1 Halmonolliar Similar in Presentin Four-phone personal intervensia + rays wedges	Samity Asert 1% 112±90 - Epit 58 outs ? 2±1 Hemoodular Similario - Penedrin Four Andem pordand for protected - ? 2±1 Hemoodular Remember pordand - * * * * * * * * * * * * * * * ***	Samiry Nobert 4% 115±32 Eight (48) site 3±1 Hgth-31 Heimrondulder Smiller b per diand 30±8 3±1 Hgth-31 Heimrondulder Smiller b per diand 30±8 3±1 Hgth-31 Heimrondulder 30±8 3±1 Hgth-31 Hgt	Absent 1% 100±55 Four(3-4) cells 13 \pm 4 1 \pm 0 High>41 Helerocehulet per strand 13 \pm 4 1 \pm 0 Him mixed	Absert ? ? Four (3-4) cells ? Heterochildur Smiller Con Protein potential interveal + Four Protein pis pis wodges	•	Absent 1% 165±02 Four03-41 osls 52±5 ±1 Hgb/s1 Helencolludar Sinler's Muhlen four perstand interneeal + Announce	• •	Absert ? ? Four G-41 otls ? 3±1 High v3 Heller Contract and a four event and transveal + + transpose that the set of the	About ? FourG41otls ? Hotevoolduat Smiler Europhom About ? ? Eurof41otls ? Hotevoolduat minereal Europhom pission mixed piss wedges	Abart 5% 165±44 Four(3-1)olds 53±16 3±1 Hgh 21 Hearcolluk Similar b Fourphoen pos stand 53±16 53±16 3±1 m mood pts pts pts wedge	Short 7% 122.456 Four D41 calls 3/1.410 3.41 Short 7% 122.456 Four D41 calls 3/1.410 3.41 can relevant + terreveal + exercised	Short ? ? Four CA-1 oxils ? . High >1 Heavon Mark Smiller to Four Poleon per stand ? nm minod intervensal • • wordpan
Vester Vester Performation Axial Axial Axial Axial Axial Barrowhma Binas Barrowhma Binas Barrowhma Bina Barrowhma Dian Barrowhma Barrowhma Dian Barrowhma Dian Dia	7 Santy Abort ? ? Ford-Algel ? 2±1 10(2) 10(2) 4 ? ?	Smiple 6/1±3 Samity Absent 1% 1/1±72 Egit(\$-8)olds 10±5 1±1 Hg)a-1 Helecondus Smith Amment of the second	2 Valicantric Short ? ? Egibl(56) cilds ? 3.±1 Sovict Metacondular Simple b per stanct ? ? per stanct ? 3.±1 mm mout contend	9.0.±1 Vasientric Sturt 7% 89.±23 Four(3-41.pdi)s 3.±1 High 21 Heimconflute Similar e pertnard 34.±5 3.±1 High 21 High 24 High	3.4.1 Validentric Short 14% 2.12.140 Fur (3-4) ratio 3.2.8 3.2.1 Soviet National Similar in the second interval of the perstand 3.2.1 3.2.1 mm rov. 2020 Min. Park 4. 4 perstand 3.2.1 mm rov. 202	7 Santy Abovet 7 7 Eur (3-4) ratis 7 3 ± 1 High Aboved Smitch 6 1 Proceed Smitch 6 1 Proceed Smitch 6 1 Proceed 1 Proceed 1 + 1 Proceed 1 Procee	Absert 7 7 For(J-4)-risk 7 3±1 High-1 Honored Smith 5 pertored 3±1 High-1 Honored Smith 5 pertored 7 7 7 pertored 4 +	Vasioninic Stort 1% 1/3_±60 Four(3-4).dolls 15_±5 2.±1 Stort-1 Heincolder Ministric perstand 15_±50 Perstand 15_±50 2.±1 Mort Heincolder 1 mm ministri	pus Scandy Absent 1%, 154±45 Four[34]totts 57±18 4±1 High?l Helmcondust Sintaris persond 57±18 4±1 mm mixed intervesional +	Absert 7 7 Four (3-1) offs 7 High? 1 Helinconfutur Service Absert 7 Pestimot 7 High? 1 Helinconfutur Service + pestimot 7 mm mode intervente +	Abovit ? ? Four(34) olds ? 3.±1 Hgp/31 Hearcochlate Smithus persiend ? 3.±1 Hgp/31 Hearcochlate Smithus persiend ? 3.±1 Hgp/31 Hearcochlate Smithus	Absert 2% 2.44±78 Four(3-1,041s 50±8 3±1 High)×1 HelencochtArt Smillerto per stand 50±8 3±1 mm mixed pis	Abset Four (3-4) rols Short of Metercolular Sinilar b Presertin pe strand mm musid pils any aps	Abrent 3% 127.±45 Four(34) cells 23.±5 3.±0 Short<1 Helerosellular Rimmerel + Present in per datard 23.±5 3.±0 mm mixed intervensel + tells	Abberk 1% 113±50 - EgH(54) olik ? 2±1 High-1 Helecoddal References + Present per dance 2 = 1 mm mode 2 = 7 mp mp	Absent 4% 115±22 Eight/S6jnalis 30±6 3±1 Hgh>1 Hapsonaluka Smilarits perstand 30±6 30±6 3±1 mm minod mixes •	Absent 1% 100±55 Four(24) pels 13±4 1±0 Hgb/s1 Helencochlar Similar b pec stand 13±4 1±0 mm mixed intervesel + +	? ? Four(3-4)cells ? ? High-1 Helenconluter Similar b perstand ? ? High-1 Helencell + + mm mixed plas	2 7 Four(3-4).pdfs ? 4±1 Hight-1 Hethroodukar Sinilario pes stand 1 4±1 mm minesel + +	1% 165±32 Four (24) roles 52±5 4±1 High 21 Helencochlate Markensel + + per strand 52±5 4±1 mm maxed interversal +	2% 103±28 Four(3-4) cells 25±3 2±1 Stort + Helencoelular Smitht the perstand 25±3 2±1 mm mixed indreseal + +	? Four (3-4) colts ? 3±1 High s1 Helencochildar Smiller to postand ? 3±1 mm mixed pits	7 Four (3-4) tolls 7 Hollencollutar Similar to perstand 7 mm mixed Interveal physical and the second of the sec	5% 165±44 Four(3-4) cels 53±16 3±1 Hgh>1 Heterocellus Smiller b per strand 53±16 3±1 mm mixed intervensi + pis	7% 123±55 Four G-41 onlis 31 ± 10 3± 1 Not <	? ? Four (A1-oils ? High >1 Hetemoothdar Smillar to per stand ? mm mixed hetemosel • •
West water (mode) West man West man West man West man West man West man West man Mai	pertanu munitari da sera ana sera sera sera ana sera se	Smple 61±3 Saminy Absert 1% 171±72 Egyt(54)olds 18±5 1±1 High>1 Hearcodular perstand	2 Vasionatic Short ? ? Epit/651.onis ? 3±1 Short Heteroodulut per stand ? 3±1 mm model	9.0.±1 Vasioentric Short 7% 89.±23 Four G-41 onlis 34.±5 3.±1 High >1 Heincondular 1 no mised not	9.4±1 - Valoantic Stort 14%, 212±140 For 0.41 rate 33±6 3±1 mm revolution mm revolution for 14%, 212±140 per officient 33±6 3±1 mm revolution of any	7 Samiy Aboort 7 7 Eur (3-4) folls 7 3 ± 1 Mg/s Horovard Marcovard Aboort 7 3 ± 1 mg/s evolution or object	Absort ? Furt(3-4) (sits ? 3 ± 1 High >1 High >1 High >1 High >1 High = 0 and a state pre-stand ? 3 ± 1 High >1 High = 0 and a state only.	Vaseentoo Short 1% 167±80 Faur (34) okis 15±5 2±1 Sont-1 Heteroohdar perstand 15±6 mm mixed	Scanty Abserd 1% 154±45 Four(3-4)cells 57±18 4±1 High>1 Helenconfuter portered 57±18 4±1 mm mood	Absent 7 7 Four(3-4) olls 7 Haterconluter perstand 7 7 Hagh 7 Haterconluter mm moved	Absent ? Four(3-4) cells ? 3.±1 High >1 Heler i per stend ? 3.±1 High >1 Heler i mm mixed	Absent 2% 244±78 Four(3-4) cells 50±8 3±1 HelencockMart per stand per stand mm mixed	Abset Four (-4) cells Short of Heterocollidar Similario + per strand mm mixed interveesel + +	Abrent 3% 127.±44 Four(3-4) cells 29.±5 3.±0 Short-1 Helencoelluer Similario per strand 29.±5 3.±0 mm mixed intervesel + +	Absert 1% 113±50 Eight(69)colls 7 2±1 Mg/H>1 Metmochular peritand peritand	Absent 4% 116±52 Eight(54) cells 30±6 3±1 H9/Pr1 Helencoelular per stand 3±1 H9/Pr1 Helencoelular	Absent 1% 100±55 Four(3-4) cells 13 \pm 4 1 \pm 0 High>41 Helerocehulet per strand 13 \pm 4 1 \pm 0 Him mixed	? ? Four(3-4) cells ? ? High >1 Heterocetular per strand ? ? mm mixed	? ? Four (3-4) cells ? 4.±1 High >1 Helencoentuar per strand ? 4.±1 mm mixed	1% 165±32 Fur(3-4) cells 52±5 4±1 High>1 Helencentular perstrand 52±5 4±1 mm mixed	2% 103±28 Four(3-4) bells 25±3 2±1 Short <1 HelenceNuter per strand 25±3 2±1 mm mixed	? ? Four(3-4) cells ? 3.±1 High>1 Heterocehldar per strand ? 3.±1 mm mixed	2 7 Eur(3-4) cells 2 7 Hgh>1 Heterocellular per strand 7 7 πm mixed in mixed	5% 185±44 Four (3-4) cells 53±18 3±1 High 21 Helencoelvar perstand moment	7% 123±55 Four(3-4) pbls 31±10 3±1 Srot<1 Homo and per stand 31±10 3±1 mm over doagee per stand over stand	7 7 Four (3-4) cells 7 7 High S-1 Helencoshlaar per strand 7 7 mm mixed
West water (mode) West man West man West man West man West man West man West man Mai	pertanu munitari da sera ana sera sera sera ana sera se	Smple 61±3 Saminy Absert 1% 171±72 Egyt(54)olds 18±5 1±1 High>1 Hearcodular perstand	2 Vasionatic Short ? ? Epit/651.onis ? 3±1 Short Heteroodulut per stand ? 3±1 mm model	9.0.±1 Vasioentric Short 7% 89.±23 Four G-41 onlis 34.±5 3.±1 High >1 Heincondular 1 no mised not	9.4±1 - Valoantic Stort 14%, 212±140 For 0.41 rate 33±6 3±1 mm revolution mm revolution for 14%, 212±140 per officient 33±6 3±1 mm revolution of any	7 Samiy Aboort 7 7 Eur (3-4) folls 7 3 ± 1 Mg/s Horovard Marcovard Aboort 7 3 ± 1 mg/s evolution or object	Absort ? Furt(3-4) (sits ? 3 ± 1 High >1 High >1 High >1 High >1 High = 0 and a state pre-stand ? 3 ± 1 High >1 High = 0 and a state only.	Vaseentoo Short 1% 167±80 Faur (34) okis 15±5 2±1 Sont-1 Heteroohdar perstand 15±6 mm mixed	Scanty Abserd 1% 154±45 Four(3-4)cells 57±18 4±1 High>1 Helenconfuter portered 57±18 4±1 mm mood	Absent 7 7 Four(3-4) olls 7 Haterconluter perstand 7 7 Hagh 7 Haterconluter mm moved	Absent ? Four(3-4) cells ? 3.±1 High >1 HearceNater perstand ? 3.±1 High >1 HearceNater /	Absent 2% 244±78 Four(3-4) cells 50±8 3±1 HelencockMart per stand per stand mm mixed	Absent Four (3-4) rolls Short <1 Helinconfusar per stand mm mixed	Absent 3% 127.±45 Four(3-4) cells 29.±5 3.±0 Short CI Helencoelluler per stand mm mixed	Absert 1% 113±50 Eight(69)colls 7 2±1 Mg/H>1 Metmochular peritand peritand	Absent 4% 116±52 Eight(54) cells 30±6 3±1 H9/Pr1 Helencoelular per stand 3±1 H9/Pr1 Helencoelular	Absent 1% 100±55 Four(3-4) cells 13 \pm 4 1 \pm 0 High>41 Helerocehulet per strand 13 \pm 4 1 \pm 0 Him mixed	? ? Four(3-4) cells ? ? High >1 Heterocetular per strand ? ? mm mixed	? ? Four (3-4) cells ? 4.±1 High >1 Helencoentuar per strand ? 4.±1 mm mixed	1% 165±32 Fur(3-4) cells 52±5 4±1 High>1 Helencentular perstrand 52±5 4±1 mm mixed	2% 103±28 Four(3-4) bells 25±3 2±1 Short <1 HelenceNuter per strand 25±3 2±1 mm mixed	? ? Four(3-4) cells ? 3.±1 High>1 Heterocehldar per strand ? 3.±1 mm mixed	2 7 Eur(3-4) cells 2 7 Hgh>1 Heterocellular per strand 7 7 πm mixed in mixed	5% 185±44 Four (3-4) cells 53±18 3±1 High 21 Helencoelvar perstand moment	7% 123±55 Four(3-4) pbls 31±10 3±1 Srot<1 Homo and per stand 31±10 3±1 mm over doagee per stand over stand	7 7 Four (3-4) cells 7 7 High S-1 Helencoshlaar per strand 7 7 mm mixed
Vester dimonpliant formant manna Vester manna Pertorition manna Ratio plan Add manna Add manna Add manna Manna Ratio manna manna manna <	pertanu munitari da sera ana sera sera sera ana sera se	Smple 61±3 Saminy Absert 1% 171±72 Egyt(54)olds 18±5 1±1 High>1 Hearcodular perstand	2 Vasionatic Short ? ? Epit/651.onis ? 3±1 Short Heteroodulut per stand ? 3±1 mm model	9.0.±1 Vasioentric Short 7% 89.±23 Four G-41 onlis 34.±5 3.±1 High >1 Heincondular 1 no mised not	9.4±1 - Valoantic Stort 14%, 212±140 For 0.41 rate 33±6 3±1 mm revolution mm revolution for 14%, 212±140 per officient 33±6 3±1 mm revolution of any	7 Samiy Aboort 7 7 Eur (3-4) folls 7 3 ± 1 Mg/s Horovard Marcovard Aboort 7 3 ± 1 mg/s evolution or object	Absort ? Furt(3-4) (sits ? 3 ± 1 High >1 High >1 High >1 High >1 High = 0 and a state pre-stand ? 3 ± 1 High >1 High = 0 and a state only.	Vaseentoo Short 1% 167±80 Faur (34) okis 15±5 2±1 Sont-1 Heteroohdar perstand 15±6 mm mixed	Scanty Abserd 1% 154±45 Four(3-4)cells 57±18 4±1 High>1 Helenconfuter portered 57±18 4±1 mm mood	Absent 7 7 Four(3-4) olls 7 Haterconluter perstand 7 7 Hagh 7 Haterconluter mm moved	Absent ? Four(3-4) cells ? 3.±1 High >1 HearceNater perstand ? 3.±1 High >1 HearceNater /	Absent 2% 244±78 Four(3-4) cells 50±8 3±1 HelencockMart per stand per stand mm mixed	Absent Four (3-4) rolls Short <1 Helinconfusar per stand mm mixed	Absent 3% 127.±45 Four(3-4) cells 29.±5 3.±0 Short CI Helencoelluler per stand mm mixed	Absert 1% 113±50 Eight(69)colls 7 2±1 Mg/H>1 Metmochular peritand peritand	Absent 4% 116±52 Eight(54) cells 30±6 3±1 H9/0 1 Helencoelular per stand 3±1 H9/0 1 Helencoelular	Absent 1% 100±55 Four(3-4) cells 13 \pm 4 1 \pm 0 High>41 Helerocehulet per strand 13 \pm 4 1 \pm 0 Him mixed	? ? Four(3-4) cells ? ? High >1 Heterocetular per strand ? ? mm mixed	? ? Four (3-4) cells ? 4.±1 High >1 Helencoentuar per strand ? 4.±1 mm mixed	1% 165±32 Fur(3-4) cells 52±5 4±1 High>1 Helencentular perstrand 52±5 4±1 mm mixed	2% 103±28 Four(3-4) bells 25±3 2±1 Short <1 HelenceNuter per strand 25±3 2±1 mm mixed	? ? Four(3-4) cells ? 3.±1 High>1 Heterocehldar per strand ? 3.±1 mm mixed	2 7 Eur(3-4) cells 2 7 Hgh>1 Heterocellular per strand 7 7 πm mixed in mixed	5% 185±44 Four (3-4) cells 53±18 3±1 High 21 Helencoelvar perstand moment	7% 123±55 Four(3-4) pbls 31±10 3±1 Srot<1 Homo and per stand 31±10 3±1 mm over doagee per stand over stand	7 7 Four (3-4) cells 7 7 High S-1 Helencoshlaar per strand 7 7 mm mixed
Vester dimonpliant formant manna Vester manna Pertorition manna Pertorition partorition Rule manna Anal manna Banna Banna <td>2 Samiy Abort 7 7 Fourier 1 2 ± 1 Hgh 7 mm mm</td> <td>Simple 61.±3 Samiy Absent 1% 171.±72 Eight(54) offs 1±1 High>1 Perstand</td> <td>? Vasiontric Short ? ? Egit(168) with ? 3 ± 1 Short 1 m to transform ? 3 ± 1 mm</td> <td>9.0.±1 Vasiontric Shart 7% 83.±23 Four (3.4.) talls 3.±1 H(3)³21 mm per strand</td> <td>9.4.±1 Valoaretic Stort 14% 212.140 Faul G41 offs 3.±1 3.±1 Stort c1 per element</td> <td>7 Samity Abbonk 7 7 Found-Hollowith 7 3±1 High>1 pertiand</td> <td>Absets 7 7 Four(3-4) colds 7 3.±1 High >1 mm $_{\rm mm}$</td> <td>Vasionintic Short 1% 167±60 Four(34)oels 15±5 2±1 Short of persimind 15±5 2±1 mm</td> <td>Scanty Accent 1% 154±45 Four(3-4).041s 57±18 4±1 High>1 perstand</td> <td>Absent ? ? Four(3-4) cells ? ? High?1 Perstand ? 7 mm</td> <td>Accent 7 7 Four (3-4) cells 7 3 ± 1 High ²¹ per strand 7 3 ± 1 mm</td> <td>Absent 2% 244±78 Four(3-4) cells 50±8 3±1 Hgh>1 per strand s 50±8 3±1 mm</td> <td>Absent Four (3-4) colls Short <1 per strand mm</td> <td>Absent 3% 127±45 Four(3-4) cells 29±5 3±0 Short<1 per strand 29</td> <td>Aboart 1% 113±50 Eight 680 oxis ? 2±1 High>1 perstand</td> <td>Absent 4% 116±52 - Epit(54) calls - 30±6 3±1 High>1 perstand - 30±6 3±1 High>1 mn</td> <td>Absent 1% 100 \pm 55 Four (3-4) cells 13 \pm 4 1 \pm 0 High 21 per strand nm</td> <td>? ? Four (3-4) cells ? ? High >1 per strand</td> <td>? ? Four (3-4) cells ? 4 ± 1 Hgh >1 per strand</td> <td>1% 165±32 - Four (3-4) pells - 52±5 4±1 High>1 mm</td> <td>2% 103±28 Four (3-4) cells 25±3 2±1 Short <1 per strand 25±3 2±1 mm</td> <td>? ? Four (3-4) cels ? 3±1 High >1 per strand ? 3±1 mm</td> <td>? ? Four (3-4) cells ? ? High >1 per strand ? ? mm</td> <td>5% 185 ± 44 Four (3-4) sells 53 ± 16 Hgh 21 per strand per strand</td> <td>7% 122±55 Four(3-4) olis 31±10 3±1 Short<1 mm</td> <td>7 7 Four (3-4) sells 7 7 High >1 per strand</td>	2 Samiy Abort 7 7 Fourier 1 2 ± 1 Hgh 7 mm mm	Simple 61.±3 Samiy Absent 1% 171.±72 Eight(54) offs 1±1 High>1 Perstand	? Vasiontric Short ? ? Egit(168) with ? 3 ± 1 Short 1 m to transform ? 3 ± 1 mm	9.0.±1 Vasiontric Shart 7% 83.±23 Four (3.4.) talls 3.±1 H(3) ³ 21 mm per strand	9.4.±1 Valoaretic Stort 14% 212.140 Faul G41 offs 3.±1 3.±1 Stort c1 per element	7 Samity Abbonk 7 7 Found-Hollowith 7 3±1 High>1 pertiand	Absets 7 7 Four(3-4) colds 7 3.±1 High >1 mm $_{\rm mm}$	Vasionintic Short 1% 167±60 Four(34)oels 15±5 2±1 Short of persimind 15±5 2±1 mm	Scanty Accent 1% 154±45 Four(3-4).041s 57±18 4±1 High>1 perstand	Absent ? ? Four(3-4) cells ? ? High?1 Perstand ? 7 mm	Accent 7 7 Four (3-4) cells 7 3 ± 1 High ²¹ per strand 7 3 ± 1 mm	Absent 2% 244±78 Four(3-4) cells 50±8 3±1 Hgh>1 per strand s 50±8 3±1 mm	Absent Four (3-4) colls Short <1 per strand mm	Absent 3% 127±45 Four(3-4) cells 29±5 3±0 Short<1 per strand 29	Aboart 1% 113±50 Eight 680 oxis ? 2±1 High>1 perstand	Absent 4% 116±52 - Epit(54) calls - 30±6 3±1 High>1 perstand - 30±6 3±1 High>1 mn	Absent 1% 100 \pm 55 Four (3-4) cells 13 \pm 4 1 \pm 0 High 21 per strand nm	? ? Four (3-4) cells ? ? High >1 per strand	? ? Four (3-4) cells ? 4 ± 1 Hgh >1 per strand	1% 165±32 - Four (3-4) pells - 52±5 4±1 High>1 mm	2% 103±28 Four (3-4) cells 25±3 2±1 Short <1 per strand 25±3 2±1 mm	? ? Four (3-4) cels ? 3±1 High >1 per strand ? 3±1 mm	? ? Four (3-4) cells ? ? High >1 per strand ? ? mm	5% 185 ± 44 Four (3-4) sells 53 ± 16 Hgh 21 per strand per strand	7% 122±55 Four(3-4) olis 31±10 3±1 Short<1 mm	7 7 Four (3-4) sells 7 7 High >1 per strand
West man West man West man West man West man West man West man West man Provening man Ray man Man Prove man Ray man Ray man direction dimprising periority man man Proves plase plase <td>Postanda Postandy Abdreed 7 2 ±1 Postanda 7 2 ±1</td> <td>Simple 61±3 Samiy Absent 1% 171±72 Eight(54)olls 18±5 1±1 perstand</td> <td>? Vasicentric Short ? ? Eght(58) colls ? 3±1 per stand</td> <td>9.0 ±1 Vasiontric Short 7% 89 ± 23 Four (3-4) pols 34 ±5 3 ± 1 per stand</td> <td>9.4.2.1 Vasionatic Short 14% 2.12.4.140 Four (3-41 oils 3.3.2.8 3.±1 per stand</td> <td>7 Scandy Accent 7 7 Four(3-4) colls 7 3 ± 1</td> <td>Absent ? ? Four (3-4) onls ? 3 ± 1 per stand</td> <td>Vasioentric Short 1% 167.±60 Four (3-4) cells 15.±5 2.±1</td> <td>Scamy Absent 1% 154±45 Four(3-4) onls 57±18 4±1 positiand</td> <td>Accent 7 7 Four (3-4) cells 7 7 Pear (3-4) cells 7 7</td> <td>Accent ? ? Four(3-4) cels ? 3±1 peritrand</td> <td>Absent 21% 244 ± 78 Four (3-4) cels 50 ± 8 3 ± 1 per stand</td> <td>Absent Four (3-4) cels per strand</td> <td>Absent 3% 127 ± 45 Four (3-4) cells 29 ± 5 3 ± 0 per strand</td> <td>Absent 1% 113±50 Egght(58) colls ? 2±1 per stand</td> <td>Absent 4% 116±52 Eight (5-6) cells 30±8 3±1 per strand</td> <td>Absent 1% 100±55 Four(3-4) cels 13±4 1±0 per strand</td> <td>? ? Four (3-4) cells ? ? ? per strand</td> <td>? ? Four(3-4) cells ? 4±1 per strand</td> <td>1% 163±32 Four (3-4) cells 52±5 4±1 per strand</td> <td>2% 103±28 Four(3-4) cells 25±3 2±1 per strand</td> <td>? ? Four (3-4) sells ? 3 ± 1 per strand</td> <td>? ? Four (3-4) pails ? ? ? per strand</td> <td>5% 165±44 Four (3-4) cels 53±16 3±1 per strand</td> <td>7% 123±55 Four (34) pals 31±10 3±1 per strand</td> <td>2 ? Four (3-4) cells ? ? ? per strand</td>	Postanda Postandy Abdreed 7 2 ±1 Postanda 7 2 ±1	Simple 61±3 Samiy Absent 1% 171±72 Eight(54)olls 18±5 1±1 perstand	? Vasicentric Short ? ? Eght(58) colls ? 3±1 per stand	9.0 ±1 Vasiontric Short 7% 89 ± 23 Four (3-4) pols 34 ±5 3 ± 1 per stand	9.4.2.1 Vasionatic Short 14% 2.12.4.140 Four (3-41 oils 3.3.2.8 3.±1 per stand	7 Scandy Accent 7 7 Four(3-4) colls 7 3 ± 1	Absent ? ? Four (3-4) onls ? 3 ± 1 per stand	Vasioentric Short 1% 167.±60 Four (3-4) cells 15.±5 2.±1	Scamy Absent 1% 154±45 Four(3-4) onls 57±18 4±1 positiand	Accent 7 7 Four (3-4) cells 7 7 Pear (3-4) cells 7 7	Accent ? ? Four(3-4) cels ? 3±1 peritrand	Absent 21% 244 ± 78 Four (3-4) cels 50 ± 8 3 ± 1 per stand	Absent Four (3-4) cels per strand	Absent 3% 127 ± 45 Four (3-4) cells 29 ± 5 3 ± 0 per strand	Absent 1% 113±50 Egght(58) colls ? 2±1 per stand	Absent 4% 116±52 Eight (5-6) cells 30±8 3±1 per strand	Absent 1% 100±55 Four(3-4) cels 13±4 1±0 per strand	? ? Four (3-4) cells ? ? ? per strand	? ? Four(3-4) cells ? 4±1 per strand	1% 163±32 Four (3-4) cells 52±5 4±1 per strand	2% 103±28 Four(3-4) cells 25±3 2±1 per strand	? ? Four (3-4) sells ? 3 ± 1 per strand	? ? Four (3-4) pails ? ? ? per strand	5% 165±44 Four (3-4) cels 53±16 3±1 per strand	7% 123±55 Four (34) pals 31±10 3±1 per strand	2 ? Four (3-4) cells ? ? ? per strand
Vester Vester Rest man Model Antion and man Antion Model Rest plane Period plane Period plane	7 Stanly Absend ? 7 Four(2-1066 ?	Smrple 6.1.±3 Samity Absent 1% 171.±72 Egit(58)ods 18±5	 Vasicentric Short ? ? Eight (5-6) oils ? per strand 	9.0 ± 1 Vasicentric Short 7% 89 ± 23 Four (3-4) cells 34 ± 5 per strand	9.4.2.1 Vasionatic Short 14% 212.4.40 Four (3-41.0016 33.2.8	7 Scarthy Absent 7 7 Four (3-4) cells 7 per strand	Absent ? ? Four (3-4) obls ?	Vasioentric Short 1% 167±60 Four (3-4) cells 15±5	Scanty Absent 1% 154±45 Four(3-4) colls 57±18 perstrand	Absent ? ? Four (3-4) cells ?	Absent ? ? Four(3-4) cells ? per strand	Absent 2% 244±78 Four (3-4) cells 50±8 per stand	Absent	Abservi 3% 127 ± 45 Four (34) oslis 29 ± 5 per strand	Absent 1% 113±50 Eight (58) cells ?	Absent 4% 116.4.52 Eight(5-8) cals 00.4.6	Absent 1% 100 ± 55 Four (3-4) oils 13 ± 4 per strand	? ? Four (3-4) cells ? Poer strand	? ? Four (3-4) onls ? Per strand	1% 165 ± 32 Four (3-4) cells 52 ± 5 per strand	2% 103±28 Four (3-4) cells 25±3	? ? Four (3-4) cels ? ? per strand	? ? Four (3-4) pails ? per strand	5% 185 ± 44 Four (3-4) cells 53 ± 18	7% 123±55 Four(3-4) cells 31±10 per strand	
Vessel Vessel Rest of minder Res minder Rest of minder	7 Sciently Abbeevel ? ?	Smple 61 ± 3 Somity Absent 1% 1/1 ± 72 Eight(58) cells persimul	? Vasicentric Short ? ? Egith(5-8) cells per strand	9.0 ± 1 Vasioentric Short 7% 89 ± 23 Four (3-4) pals	9.4.±1 Vascentric Shurt 14% 212.±140 Four (3-4) cells per strand	7 Scanty Absent ? ?	Absent ? ?	Vascentric Short 1% 167±60 Four (3-4) cells per strand	Scanty Absent 1% 154±45 Four (34) otls	Absent 7 7 Four (3-4) cells per strand	Absent ? ? Four (3-4) cells	Absent 2% 244 ± 78 Four (3-4) cells per strand	Absent	Absen/ 3% 127 ± 45 Four (3-4) cells per strand	Absent 1% 113±50 Eight(5-5) cells per strand	Abservi 4% 116±52 Eight (5-8) cells per strand	Absent 1% 100±55 Four(3-4) cells per strand	? ? Four (3-4) cells per strand	2 ? Pour (3-4) cells per strand	1% 165 ± 32 Four (3-4) cells per strand	2% 103 ± 28 Four (3-4) cells per strand	2 7 Feur (3-4) cells per strand	7 7 Four (3-4) cells per strand	5% 185 ± 44 Four (3-4) cells per strand	7% 123 ± 55 Four (3-4) cells per strand	
West West West and and man Mode	7 Sciently Abbeevel ? ?	Smple 61 ± 3 Scarity Absent 1% 171±72	? Vasicentric Short ? ?	9.0 ± 1 Vasicentric Short 7% 89 ± 23	9.4 ± 1 Vasicentric Shicrt 14% 212 ± 140	7 Scanty Absent ? ?	Absent ? ?	Vasicentric Short 1% 167 ± 60	Scanty Absent 1% 154±45	Absent ? ?	Absent ? ? -	Absent 2% 244±78	Absent	Absent 3% 127±45	Absent 1% 113±50 -	Absent 4% 116 ± 52	Absent 1% 100±55			1% 165 ± 32	2% 103±28			5% 185±44	7% 123±55	
Vessel Vessel Vessel Performion Audi man Audi break Audi man Vessel Performion Production Intervessel Netrical Perturbation preventyment Audi preventyment Audi preventyment Audi preventyment Audi preventyment Audii preventyment Audii	7 Sciently Abbeevel ? ?	Smple 61 ± 3 Scarity Absent 1% 171±72	? Vasicentric Short ? ?	9.0 ± 1 Vasicentric Short 7% 89 ± 23	9.4 ± 1 Vasicentric Shicrt 14% 212 ± 140	7 Scanty Absent ? ?	Absent ? ?	Vasicentric Short 1% 167 ± 60	Scanty Absent 1% 154±45	Absent ? ?	Absent ? ? -	Absent 2% 244±78	Absent	Absent 3% 127±45	Absent 1% 113±50 -	Absent 4% 116 ± 52	Absent 1% 100±55			1% 165 ± 32	2% 103±28			5% 185±44	7% 123±55	
Vessel Vessel Vessel More than the set cannot be a set of the set of	? Scanty	- Simple 6.1 ± 3 - Scamy Absent 1%	? Vaskentric Short ?	9.0 ± 1 · Vasicentric Short 7%	9.4.±1 · Vasicentric Short 14%	7 - Scanty Accent	Absent ?	- Vasicentric Short 1%	- Scanty Absent 1%	Absent 7	Absent ?	Absent 2%	Absent -	Absent 3%	Absent 1%	Absent 4%	Absent 1%	ć	e.	÷	2%	~	¢-	5%	2%	¢-
Vessel Vessel Perfocision Intervessel Neild P	? Scanty	- Simple 6.1 ± 3 - Scamy Absent 1%	? Vaskentric Short ?	9.0 ± 1 · Vasicentric Short 7%	9.4.±1 · Vasicentric Short 14%	7 - Scanty Accent	Absent ?	- Vasicentric Short 1%	- Scanty Absent 1%	Absent 7	Absent ?	Absent 2%	Absent -	Absent 3%	Absent 1%	Absent 4%	Absent 1%	ć	e.	÷	2%	~	¢-	5%	2%	¢-
Vessel Vessel Perforation Perforation therveasel Heiland Demote and	? Scanty	. Simple 6.1 ± 3 . Scanty	? Vasicentric	9.0±1 · Vasicentric Short	9.4 ± 1 - Vasicentric Short	? Scanty		. Vasicentric	- Scanty					Absent	Absent			Absent ?	Absent ?	Absent 1%	Absent 2%	sent ?	sent ?	sent 5%	Short 7%	Short ?
Vested Importing dimorphism Vested main Vested main Vested main Vested main Vested main Partnachtal partnachtal partnachtal partnachtal partnachtal Partnachtal partnachtal partnachtal partnachtal partnachtal Vested main main Mina pit kas (µm) mickening partnachtal partnachtal Vested main main partnachtal partnachtal partnachtal	? Scanty	. Simple 6.1 ± 3 . Scanty	? Vasicentric	9.0 ± 1 Vasicentric	9.4 ± 1 · Vasicentric	? Scanty		. Vasicentric	- Scanty									Absent	Absent	Absent	Absent	sent	Bent	has	Short	Short
Vessel Vessel renammentament Messel resonancementamentament dimorphism frequency Wald Attraver dimorphism (pan) vessels vesse		Simple 6.1 ± 3		9.0±1	94±1		? Vasicentric			- Scanty	Scanty	Scanty	Scanty	Scanty	Scanty	anty					*	Abs	άA			
Vessel Vessel variationmunication variation variation frequency Wate Attraver Photos plate dimorphism frequency Wate Attraver Photos plate (vm) (vm) (vm) (vm) (vm) (vm) (vm) (vm)	? Simple ?	- Simple						1±2	•							S	Scanty	Scanty	Scanty to vasicentric	Scanty	Scanty	Scanty	Scanty	Vasicentric	Alform	Alform
Vessel Vessel variationmunication variation variation frequency Wate Attraver Photos plate dimorphism frequency Wate Attraver Photos plate (vm) (vm) (vm) (vm) (vm) (vm) (vm) (vm)	? Smple ?	- Simple				¢-	0-	±2			•		·	•		•	•	•	•			•				
Vessel vessels v	7 - Simple		- Simple	Simple	Simple				6.0±1	~	~	7.0±4		7.6±2	8.8±3	8.4 ± 1	8.3±2	e-	e-	9.6±2	6.9 ± 3	e-	e-	10.3 ± 2	8.3 ± 3	e-
Vessel Vessel vess vanneer Vessel requency Incquency Wed Narrow (per ma2) Wed Narrow (per ma2) Vessels vessels (pm) (pm)	~	•			57	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple
Vessel Vessel vessel dimorphism (per mm2) Wide (um)	ţ.			÷	6			9	. 63		•	÷.	(+)	10		88		•	•	6				F.7	9	•
Vessel Vessel dimorphism (per mm2)	c	72 ± 20 NA	÷	133 ± 37 20 ± 11	232±57 20±9	6	÷	216±43 23±6	139±25 22±9	~	<i>i</i>	192±32 35±11		109±25 16±5	118±28 24±7	112±15 23±8	167 ± 25 15 ± 5	~	6	138 ± 26 29 ± 9	190±30 14±3	ć ć	¢.	290±54 21±7	208±37 17±6	5
Vessel dimorphism	۰.	14±5 7	ć	118±36 13	101±30 23	~	6	33±20 21	109 ± 14 13	¢-	e	97 ± 19 15		100±7 10	35±12 11	100±17 11	88±27 16	¢-	6	75 ± 18 13	52±19 15	0-	e-	60 ± 40 25	47±25 20	~
	÷		÷	÷	÷	+	÷	+	÷	÷	+	+	÷	+	+	·	+	+	+	٠	·	+	÷	÷	÷	÷
Di Co	2.92 ± 1.01	1.31 ± 0.26	0	3.01 ± 1.03	3.69 ± 1.48	~	~	2.12 ± 0.59	2.80 ± 0.33	e-	¢	3.76 ± 1.33	e-	2.83 ± 0.65	2.41±0.57	2.25±0.62	3.31 ± 0.85	c.	ć	2.03 ± 0.37	2.29 ± 0.82	0	4.63 ± 1.77	~	3.00 ± 0.41	e-
ary to as of 2			Solitary (wide vessels)	Solitary (wide 3. vessels)	Solitary (wide 3. vessels)	Solitary (wide vessels)	Solitary (wide vessels)	Solitary to 2. multiples of 2-3		Solitary to multiples of 2-3	ary to es of 2-3	Radial multiples of 4 or more 3. common	Solitary to multiples of 2-3		Solitary to multiples of 2.3 and small 2. vessels in radial multinies		Solitary to 3. multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to 2.3 2. multiples of 2-3	Solitary (wide 2. vessels) 2.	Solitary to multiples of 2-3	Solitary to 4. multiples of 2-3	Solitary to multiples of 2-3	Solitary (wide 3. vessels)	Solitary to multiples of 2-3
sel Vessel grouping amont Vessel grouping Solitary to Solitary to Sel												Radial attern of 4 c														
rring er: Vessel red arrangeme rs Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse to tangential	Diffuse to tangential	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Radial pattern	Diffuse	Diffuse	Radial pattern	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse
Ing Growth Inted flatter fibe	+	+	+	•	+	+	+	+	*	+	+	+	*	+	+	•	+	+	*	*	+	+	•	+	+	*
ng Growth marker.dl na rays			+		•	~	+		*	*	+					•	+		•	*	+					
	+	+	+	•		+	·	+				+	·	•				+	٠	*	+	+	٠	+	+	٠
Porosity Semi-ring porous	Semi-ring porous		Semi-ring porous	Diffuse	Diffuse	Semi-ring porous	Semi-ring porous	Semi-ring porous	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Semi-ring porous	Diffuse	Semi-ring porous	Semi-ring porous	Semi-ring porous	Diffuse	Diffuse	Diffuse	Diffuse	Semi-ring porous	Diffuse
Habit Liana	Liana	Shrub	Liana	Liana	Liana	Liana	Liana	Liana	Llana	Liana	Liana	Liana	Llana	Liana	Liana	Liana	Liana	Liana	Llana	Liana	Liana	Liana	Liana	Liana	Liana	7 Llana
Species Fridericia chica	Fridericia conjugata	Fridenicia platyphylla	Fridericia samydoides	Fridericia speciosa	Lundie damazi	Lundia glazioviana	egnol elbuu.L	Manaosella cordifolia	Mansoa difficitis	Mansos onofruatootdes	Mansoa standley	Martinelle obovata	Neojobertia mirabilis	Neojobertia sp.nov.	Pachyptera kerere	Perianthomega vellozoi	Pleonotoma melioides	Pleonotoma stichadenia	Pleonotoma tetraqueta	Pyrostegia venusta	Słiżophyłkum rópanium	Tanaecium bilabiatum	Tanaecium duckei	Tanaecium pyramidatum	smeubos smytneu/L	Xyfophragma myrianthum
Tribe or clade		ď.	4	4	-	7	7	~	4	~	Y	¥	BIGNONIEAE	~	4	4		4	4	*	~	-	-	-	-	*

Climate of occurrence	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical
Type of cambial variant	AN	NA	MA	MA	W	W	NA	NA	MA	NA	MA	NA	NA	NA	NA	NA	M	W	NA	NA	W	NA	NA	MA	NA	M	NA
Crystals	Present in rays and axial	parenchyma	Present in rays and axial parenchyma						Present in rays				•		Present in rays						Present in rays						
Perforated ray cells										•	•	•													•		
Septate					+							•							. 7							. 77	
r Vessel-ray i pitting		plts Similar to Intervessel plts		Similar to intervessel pits	Similar to intervessel pits		Similar to intervessel pits	Similar to Intervessel pits	15 E		Similar to intervesse	Sin Inte	Similar to intervesse	inte Sin	in Si	Similar to intervesse pits	:5 문	Similar to intervessel pits	Similar to intervessel pits	Similar to intervessel pits	inte Si	Similar to intervesse ptts	Similar to intervessel pits	Similar to intervessel pits	の言	is it	Similar to intervessel
Rays: cellular composition	Homocellular	Homocellular	Homocellular	Homocellular	Homocellular	Homocellular	Homocellular	Homooellukar	Homo and hetero with 1 ow of square celts	Homocellular	Homocellular	Homocellular	Homocellular	Homocellular	Homooellular	Homocellular	Homo and hetero with 1 row of square cells	Homooellular	Homocellular	Homocellular	Homooellular	Homocellular	Homocellular	Homocellular	Homocellular	Homo and hetero with 1 row of square cells	Homo and hetero with 1 row of square
Ray F height	Short <1	Short <1	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm					
Ray width In number of cells	1±0	1±0	1±0	1±0	2±0	2±0	3±1	2±1	3±1	3±0	3±0	2±1	3±0	2±0	2±1	3±1	2±0	2±0	2±0	2±1	1±0	2±1	2±0	2±0	1±1	3±1	2±1
In µm	17 ± 4	16±6	15±6	19±7	20 ± 4	21±4	32 ± 5	c.	25±5	0	~	21±7	28±6	0	~	35±4	30±7	32 ± 3	~	24 ± 7	12 ± 3	¢	¢	~	¢	40 ± 8	~
Storled	+	+	+	+		+	•	+	+	+	+	•	+	+	+	+	+	+	+	*	+	+	ŧ	+	+	+	+
Parenchyma a strands	Two cells per strand	Two cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Two cells per strand & Four (3- 4) cells per strand	Four (3-4) cells per strand	Two cells per strand	Two cells per strand	Two cells per strand	Four (3-4) cells per strand	Two cells per strand	Two cells per strand & Four (3- 4) cells per strand	Four (3-4) cells per strand	Four (3-4) celts per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) celts per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Two cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand
Diffuse parenchyma	•	•			+		•	,		•	•		•		,	•					·	•		•			
Axial parenchyma cell mean area (µm2)	501±136	811 ± 448	187 ± 49	539 ± 140	165 ± 45	321 ± 106	277 ± 114	2	504 ± 110	i	ł	492 ± 115	257±96	~	~	206±28	279±64	86 ± 42	¢	505 ± 268	386 ± 118	2	i	~	i	291±121	i
Axial parenchyma frequency	20%	8	11%	45%	12%	19%	4%	6	18%	ć	6	34%	%s	~	~	ŝ	13%	4%	۰.	20%	27%	e-	¢-	0-	ć	14%	0
Patratracheal Confluence parenchyma	Long. forming	bands Long, bands	Short & Long, forming bands	Long, forming bands	Short & Long. forming bands	Long, forming bands	Short	Absent	Short	Short	Short	Long, forming bands	Short	Short	Absent	Short	Shart	Short	Short	Long, forming bands	Short & Long. forming bands	Short & Long, forming	Short & Long, forming hands	Short & Long, forming	At short sectors	Long, forming bands	Long. forming
	Alform	Alform	Aliform	Alform	Alform	Alform	Vasicentric	Scanty	Vasicentric	Alform	Aliform	Aiform	Aiform	Aiform	Vasicentric	Vasicentric	Vasicentric	Niform	Aliform	Aiform	Aiform	Alform	Alfform	Aliform	Alform	Vasicentric	Vasicentric
Intervessel Helical pit size (µm) thickening	•	•					•	•		•	•	·	•	•	•	•					•			•	•		
Intervesse pit size (µm	ć	4.3 ± 3	54 ±2	r-	43±2	3.1 ± 0.8	65±3	ć	53±2	112±4	12.4±2	19.1±3	12.2 ± 2	11.3±2	e-	5.1±1	25±1	63±1	52±2	43±1	83±2	6	¢	r-	ć	6.7±2	63±1
Tyloses Perforation plate p	Simple	Simple	Reficulate or foraminate plate present	Simple	Reliculate or foraminate plate present	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Reliculate or foraminate plate present	Reficulate or foraminate plate present	Simple	. Simple	Simple	Simple	Simple	Simple	Reficulate or foraminate plate present	Simple
1	NA	¥,	¥,	¥.	ž	NA	¥,	¥\$	¥.	¥,	¥.	*	¥,	¥	¥	¥,	\$	\$	\$	\$	×.	¥,	¥,	¥ł	¥,	\$	AV AV
mean Vide Narrow vessels vessels (um)	69±25	8 7 8	55±11	678	44±6	45±6	107 ± 29	e-	42±8	ć	6	97 ± 11	125±2	~	e-	97±25	83 ± 18	50±11	e-	86±15	54 ± 12	e-	0-	0-	ć	59 ± 13	ć
Vessel frequency (per mm2) v	9±7 6	11±6	31±7 5	16±4	47 ± 10	43 ± 4	13±6 10	0	26±16 4	¢	~	25 ± 9 9	12±5 1	~	~	12±5 9	51±18 8	60±19 5	~	14 ± 10 6	27±7 5	¢.	¢	~	¢	30±16 5	0
Vessel fr dimorphism (5											,			,							·				,		
Vessels/group	1.55 ± 0.25	1.24 ± 0.30	1.34 ± 0.31	1.38 ± 0.32	1.58 ± 0.37	2.08 ± 0.36	1.51 ± 0.31	ć	2.22 ± 0.71	ė	1.20 ± 0.24	1.40 ± 0.25	1.49 ± 0.30	1.43 ± 0.23	1.84 ± 0.33	1.20 ± 0.19	1.83 ± 0.45	1.74 ± 0.31	~	1.47 ± 0.36	1.74 ± 0.40	0	¢	~	¢	1,85 ± 0,40	1.37 ± 0.32
Vessel grouping	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to
Vessel arrangement	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Tangential bands n	Diffuse	Diffuse	Tangential bands n	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse
marker: flattened fibers	.					.	÷			٠	٠	·	·	÷	+	÷	+				·	·	+	+	٠		
B Growth ring marker: marker:dilated flattened : a rays fibers								,		,			٠	+	+		+								,		,
Growth ring (marker: m parenchyma	•	÷	·	+	+		+	•	÷		+	•		+	+	+	+	•	•	•	٠		·	+	+	+	
Porosity	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Semi-ring porous	Diffuse	Semi-ring porous	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse&Semi- ring	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Semi-ring porous	Diffuse
Habit	Tree	Tree	Small tree	Small tree	Tree	Tree	Tree	Tree	Tree	Tree	Tree	Tree	Tree	Tree	Tree	Tree Diff	Tree	Tree	Tree	Tree	Tree	Tree	Tree	Tree	Tree	Tree	Tree
Species	Amphitecna latifolia	Amphiteona regalis	escentia al <i>ata</i>	Crescentia cujefe	Parmentiera macrophylla	Cybistax antisyphiltica	Ekmanianthe actinophylla	Ekmanianthe longitiona	Godmania aescutifolia	Handroanthus albus	Handroanthus barbatus	Handroanthus chrysotrichus	Handroanthus impetiginosus	Handroanthus serratifotus	Paratecoma peroba	Roseodenaron donnell- smithi	Sparaffosperma leucanthum	Spirotecoma spiratis	Tabebula aurea	Tabebuia cassinoldes	Tabebola fluvia@s	Tabebula heterophylla	Tabebuia obtusifolia	Tabebua rigida	Tabebuia roseoalba	Zeyheria montana	Zeyheria fuberculosa
Tribe or clade	An	ЧК	TABEBUIA ALLIANCE (CRESCENTIEAE)	8	.е. 2	Ĝ	ű	đ	ğ	Ħ	н	Ŧ	Ŧ	н	ů.	2.22	đ	TABEBUIA ALLIANCE	æ	β.	¹ 22	đ	ŢВ	Ţa	β.	Ze	26

Table 1 continued

cambial Climate of variant occurrence	NA Subtropical (and)	NA Tropical	NA Tropical	NA Tropical	NA Tropical	NA Tropical	NA Tropical	NA Tropical	NA Tropical	NA Tropical	NA Subtropical	NA Subtropica	NA Tropical	NA Tropical	NA Tropical	NA Tropical	NA Tropical	NA Tropical	NA Tropical	NA Tropical	NA Tropical	NA Tropical	NA Tropical	NA Tropical	NA Tropical	NA Tropical	NA Tropical
v v		Present in rays	Present in rays				Present in rays	~	Present in rays		resent in rays	Present in rays		Present in rays					Present in rays				Present in rays	Present in rays			
		Pre	Pre		·		Pre-			,	- Be		,						-Bee	,		,	- Pre-	- Pre-			
pitting fibers ray cells	Similar to intervessel pits	Similar to intervessel pits	Similar to intervessel pits	Similar to intervessel pits	Similar to intervessel pits	Similar to intervessel	w E	Simple to semi-++	Simple to semi- +	Similar to intervessel pits	Similar to intervessel pits	Similar to intervessel pits	Similar to intervessel	Simitar to intervessel pits	0 0	Similar to intervessel otts	io E	Similar to intervessel (+) pits	Similar to intervessel (+)	Similar to intervessel (+) pits		s e		·· .=		Similar to intervessel + pits	Similar to intervessel
composition	Homo and hetero with 1 row of square cells	Homooellular	Homocellular	Homocellutar	Homo and hetero with 1 row of square cells	Homo and hetero with 1 row of square	cells Homo and hetero with 1 row of square cells	Homo and hetero with 1 row of square cells	Homo and hetero with 1 row of square	Homocellular	Homo and hetero with 1 row of square cells	Homo and hetero with 1 row of square cells	Homo and hetero with 1 row of square cells	Homocellular	Homo and hetero with 1 row of square cete	Homocellular	Homo and hetero with 1 row of square cells	Homo and hetero with 1 row of square cetis	Homo and hetero with 1 row of square cells	Homo and hetero with 1 row of square	Homo and hetero with 1 row of square	Cens Homocellutar	Homooellular	Homocellular	Homo and hetero with 1 row of square cells	Homocellular	Homooslular
height	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm	Short <1 mm
In number of cells	2±1	1±0	1±0	1±0	1±1	3±1	2±0	3±1	2±1	2±0	2±1	2±1	2±0	1±0	3±0	1±0	3±1	3±0	3±0	3±1	3±0	1±0	1±0	1±0	3±1	3±1	3±0
structure In µm	~	ι.	ι.	15±4		41±7		40 ± 7	e.	31±9	- 18±5		41±8	21±5		- 12±2			35±5		e.	ι.		- 14±2	. 39 ± 12	- 39±8	. 33±7
a strands	Two cells per strand & Four (3- 4) cells per strand	Two cells per strand	Two cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) celts per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand	Two cells per strand	Four (3-4) cells per strand	Four (3-4) cells per strand
a parenchyma		٠	٠											+		+	•	•				٠	٠	٠		•	•
ma parencriyma cy cell mean area 1 cy (µm2)	r	ć	e-	310 ± 109	~	300 ± 95	ć	494 ± 141	ć	490 ± 144	213±91	e.	1198 ± 529	366 ± 97	ć	126±65	e	Ŀ	278±80	0	e	¢.	e.	259 ± 124	371±126	577 ± 236	374 ± 114
e parenchyma frequency	~	p	¢-	Ŕ	~	102	~	13%	0-	27%	8	0	N92	16%	e-	2%	~	~	10%	~	e-	e	e-	14%	18%	%Z	ř.
Paranacneal Confluence parenchyma	Short	Short	Short	Short & Long. forming bands	Short & Long. forming bands	Absent	Absent	Short	Absent	Long. forming bands	Short	Short	Long. forming bands	Short	Short	Short	Long. forming bands	Short	Short	Short	Short	Short	Short	Short	Long, forming bands	Short	Long, forming bands
parenchyma	Alform	Vasicentric	Aliform	Alform	Aliform	Alform	Scanty	Aiform	Scanty	Alform	Niform	Aliform	Aliform	Alform	Aliform	Alform	Aliform	Aliform	Aliform	Vasicentric	Vasicentric	Alform	Alform	Vasicentric	Alform	Aliform	Vasicentric
plate pit size (µm) thickening					•													,						+		•	•
pit size (µm)	r	p	¢-	6.1±1	p	52±1	0	83±3	0-	72±2	52±3	e	4.7±2	22±1	e-	75±2	0-	e	43±2	r-	e-	e	e-	22±1	7.8±2	10.7±1	9.0±2
	Simple	Simple	Simple	Reficulate or foraminate plate present	Reliculate or foraminate plate present	Simple	Simple	Simple	Simple	Simple	Simple	Reficulate or forarrinate plate present	Reficulate or forarrinate plate present	Simple	Simple	Simple	Simple	Simple	Reticulate or foraminate plate present	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple
ow Tyloses iels n)	NA		¥.	VN	44	N	VN	N			VN		NA		£				\$					v,	+		
Viide Narrow vessels vessels (um) (um)	~	2 N	N é	72±22 N	N 6	92±19 N	N 6	112±26 N	2 2	137 ± 26 N	N 15∓96	N C	133 ± 19 N	68 ± 14 N	N 2	51±13 N	м С	N 6	N 6∓\$2	× ×	3 2	2 2	N ~	77±14 N	136±34 N	158±56 N	70±23 NA
frequency Wide Narrow (per mm2) vessels vessels (um) (um)	~	~	~	10±9	e-	73±21 90	~	14±6 11	ć	6±4 13	49 ± 29 96	~	11±5 13	21±12 68	~	39±14 5′	~	~	24±9 7	e-	~	~	~	34±8 7	8±5 13	9±10 15	28±11 70
dimorphism ()					,																						
۵.	c	1.97 ± 0.24	~	2.29 ± 1.02	~	2.58 ± 1.64	1.50 ± 0.23	1.29 ± 0.17	1.28 ± 0.20	1.12 ± 0.12	1.15 ± 0.19	¢	1.60 ± 0.36	1.68 ± 0.33	1.25 ± 0.47	1.61 ± 0.17	~	ç	1.29 ± 0.18	c-	e.	e-	0-	1.81 ± 0.36	1.30 ± 0.28	1.08 ± 0.09	
marker: marker.dilated menser. ^{vessen} Vessel grouping Vessels/grou parenchyma rays fibers	Solitary to multiples of 2-3	Solitary to multiples of 2-3 and some	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3 and some		Solitary to multiples of 2-3	Solitary to multiples of 2-3	Solitary to multiples of 2-3
rangement	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diñuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diñuse	Tangential bands
fibers	+		+		+	+	+			*		+		+	+	+	+	+				•					+
er:dilated f																											
arker: mark nchyma	+		+	•		+		•		•			+					+								+	+
Porosity ma	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	Diffuse	ni-ring suo	Diffuse	fuse	luse	gui-ir ous	Semi-ring porous	Diffuse	Diffuse	fuse	esnj	Diffuse	Diffuse	Diffuse	Diffuse	fuse	fuse	Diffuse	Tuse	Diffuse	Diffuse	Semi-ring porous
Habit Porc	Shrub Diff	Treelet Diff	Treelet Diff	Tree Diff	Tree Diff	Tree Diff	Sem Sem	Tree Diff	ree Diff	Tree Diff	Tree Sem	Small tree Sem	Tree Diff	Tree Diff	ree Diff	rae Diff	Tree Diff	Tree Diff	Tree Diff	Tree Diff	iree	eelet Diff	freelet Diff	Tree Diff	Tree Diff	Tree Diff	Tree Sem
Species Ha	Catophractes alexandri Sh			titione atrovirens	Dolichandrows spothaccea	Fernandoa adenophylla	Fernandoa magnifica		vagma sufureum 1.			Markhamia stipulata Sma	Newbouldia laevis	Ophiocolea Roribunda Tr	Pajanska kongritska	Phyllerthron bojeranum	Т	Radermachera gigantea Tr	schera glandulosa	Rademachera piwiata	achera sinica Tr	Phodocoles multifiors Tre	Rhodocales nycleriphillis Tre	Rhodiocolea leifarii	Spethodea campanulata	ermum chelonoides T.	Tecometra undutata
Tribe or clade	Catophre	Cates gentryi	Colea resupinata	Dalichan	Dolichan	Femano	Fernand	Heterophragma quadhboulare	Heterophragma	Kigetia africana	Markhamia Meea	Markhan	PALEOTROPICAL Memboon CLADE	Ophiaco	Pajanelu	Phyllerth	Radermi	Radermu	Radem	Raderma	Raderme	Rhodocc	Rhodoc	Rhodecc	Spethod	Stereost	Tecomel

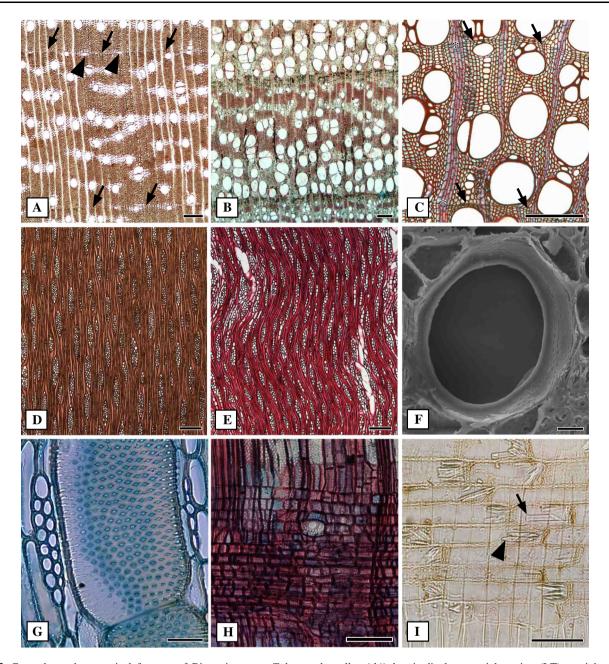


Fig. 2 General wood anatomical features of Bignoniaceae. a *Tabebuia rigida*, transverse section (TS), diffuse porous wood with aliform parenchyma with short confluences and growth rings delimited by a line of marginal parenchyma (*arrows*) associated with very narrow vessels (*arrowheads*). b *Chilopsis linearis*, TS, semi-ring porous wood, growth rings marked by a band of marginal parenchyma and radially flattened fibers, tyloses common. c *Mansoa difficilis*, TS, scanty paratracheal parenchyma, growth rings marked by radially flattened fibers (*arrows*) and dilated rays (*asterisks*). d *Roseodendron*

donnell-smithii, longitudinal tangential section (LT), straight grain, multiseriate non-storied rays. **e** *Dolichandrone atrovirens*, LT, wavy grain, multiseriate non-storied rays. **f** *Tabebuia aurea*, TS, scanning electron microscopy of simple perforation plate. **g** *Handroanthus barbatus*, LT, intervessel pits alternate. **h** *Campsis radicans*, longitudinal radial section (LR), perforated ray cell **i** *Radermachera glandulosa*, LR, prismatic (*arrow*) and navicular (*arrowhead*) crystals in rays. *Scale bars* **a**, **c**, **d**, **e** 200 µm, **b** 400 µm, **f** 20 µm, **g**, **i** 50 µm, **h** 100 µm

Jacarandeae

We sampled six of the 51 species representing both genera, *Digomphia* (one of three species) and *Jacaranda* (five of 49

species), currently included in the tribe (Lohmann and Ulloa 2006 onwards). Representatives of both *Jacaranda* sections *Monolobos (J. copaia, J. brasiliana* and *J. obtusifolia)* and *Dilobos (J. puberula* and *J. ulei)* were sampled.

ğ
÷.
2
tribe
by
and habits
and
eatures
f boow
f the
of
nopsis of the
Sy
2
Table
•

0

Tribe or clade	Habit	Porosity	Growth ring marker: parenchyma	Growth ring marker:dilated rays	Growth ring marker: flattened fibers	Vessel arrangement	Vessel grouping	Vessel T dimorphism	Tyloses	Perforation plate 1	Helical F thickening	Patratracheal parenchyma	Confluence	Diffuse parenchyma	Parenchyma strands	Storied structure	Ray height	Rays: cellular composition	Vessel-ray pitting	Septate fibers	Septate Perforated fibers ray cells	Crystals
JACARANDEAE	Trees, and a few subshrubs in arid zones	Diffuse	+	+1	+	Diffuse	Solitary to multiples of 2-3			Simple		Aliform	Short to long		Four (3-4) cells per strand		Short <1 mm	Homocellular in Jacaranda Monolobos and heterocellular in Jacaranda Dilobos	Similar to intervessel pits			Present in the rays of some species
TECOMEAE	Mostly lianas, with few trees and shrubs	Diffuse to ring- porous	+1		+	Diffuse	Solitary to multiples of 2-3	+ in lianas		Simple	+ in species ring-porous	Scanty to vasicentric	Absent from present		Mostly four (3- 4) cells per strand		Short <1 mm and hight > 1mm in lianas	Heterocellular	Similar to intervessel pits	+	+ in lianas	Present in the rays of some species
DELOSTOMA	Trees	Diffuse	+	i	•	Radial pattern	Solitary to multiples of 2-3 & Radial multiples			Simple		Scanty	Absent		Four (3-4) cells per strand	•	F Short <1 mm wi	Homo and hetero Short <1 mm with 1 row of square cells	Similar to intervessel pits	+		Present in rays
OROXYLEAE	Trees, a few lianas	Diffuse	+	+I	+	Diffuse	Solitary to multiples of 2-3		fr	Reticulate, foraminate and simple	•	Vasicentric to aliform	Short		Four (3-4) cells per strand		Short <1 mm	Homocellular	Similar to intervessel pits	+1		·
CATALPEAE	Trees	Semi-ring porous	+	·	+	Diffuse	Solitary to multiples of 2-3		+	Simple	+ in species semi-ring porous	Scanty to aliform	Absent to short		Four (3-4) cells per strand	•	H Short <1 mm wi	Homo and hetero Short <1 mm with 1 row of square cells	Simple to semi- bordered	+1		Present in the rays of some species
BIGNONIEAE	Liana, a few shrubs	Liana, a few Diffuse to semi- shrubs ring porous	+	+	+	Diffuse	Solitary to multiples of 2-3	÷		Simple	•	Scanty to aliform	Absent		Four (3-4) cells ⁻ per strand	, present in but a few species	Generally high He >1 mm	sterocellular mixed	Four (3-4) cells -, present in Generally high Heterocellular mixed Predominantly similar per strand species >1 mm	+	+	Present in the rays of some species
TABEBUIA ALLIANCE	Trees	Diffuse	+	·		Diffuse	Solitary to multiples of 2-3		-	Mostly Simple	•	Aliform	Generally long, forming bands		2-4 cells per strand	+	Short <1 mm	Homocellular	Similar to intervessel pits	•		wnen present, in both rays and axial
PALEOTROPICAL CLADE	Trees and shrubs	Diffuse	+	+	+	Diffuse	Solitary to multiples of 2-3		-	Mostly Simple		Aliform	Short to long + in Coleeae		Four (3-4) cells per strand		ł Short <1 mm wi	Homo and hetero Short <1 mm with 1 row of square cells	Similar to intervessel pits			Present in the rays of some species
Key: + present, - absent, ? unsampled	ent, – al	bsent, ?	unsampl	ed																		

Diagnostic features

Jacarandeae have a unique combination of winged-aliform axial parenchyma, with short to long confluences, nonstoried structure, and non-septate fibers.

Detailed description

Growth rings are distinct to indistinct, delimited by thickwalled and radially flattened fibers associated with narrow vessels (Fig. 3a), sometimes with dilated rays (e.g., Jacaranda puberula, J. ulei) and a line of marginal parenchyma (Fig. 3d). Porosity diffuse. Vessels solitary (Fig. 3a) or in multiples, predominantly of 2–3 (Fig. 3b–d), 1.68 ± 0.40 vessels/group, narrow, $70 \pm 8 \,\mu m$ in diameter (Jacaranda *copaia*, very wide 300 μ m), and 17 \pm 10/mm² in frequency (J. copaia 3 ± 5). Perforation plates are simple. Intervessel pits are medium (7-10 µm in diameter). Vessel-ray pits are similar in size and shape to the intervessel pits. Fibers are nonseptate, thin (Fig. 3a) to thick-walled (Fig. 3b), with simple to minutely bordered pits. Parenchyma is winged-aliform (Fig. 3a), lozenge to winged-aliform in *Digomphia* (Fig. 3b), with short (Fig. 3a-b) to long confluences (Fig. 3c-d) sometimes forming lines that vary from 1 to 4 cells; and marginal parenchyma forming lines of 1-2 cells (Fig. 3d). Parenchyma strands are mostly of 4 cells, except from J. copaia, which has 5-8 cells per strand. Rays are non-storied, with a contrasting composition between sections Monolobos and Dilobos. In Jacaranda section Monolobos rays are uniseriate and homocellular (J. brasiliana and J. obtusifolia; Fig. 3e, f), except from J. copaia (species atypical within section Monolobos), with 2-4-seriate homocellular to slightly heterocellular rays (with one row of marginal square cells). In Jacaranda section Dilobos rays are biseriate and heterocellular, with 2-4 marginal upright to square cells (J. puberula and J. ulei; Fig. 3g, h). In Digomphia, rays are biseriate, homo and heterocellular with one row of marginal square cells.

Tecomeae

We sampled nine of the 52 species currently included in Tecomeae s.s. (Lohmann and Ulloa 2006 onwards). Our sampling included members of eight of the 11 genera currently recognized in the tribe; only *Campsidium*, a monotypic genus from Chile and Argentina, *Incarvillea*, an herbaceous genus from the Himalayas, and *Lamiodendron*, a monotypic genus from Papua New Guinea, were not sampled. We sampled: *Campsis radicans* (1 of 2 species), *Deplanchea bancana* (1 of 5 species), *Pandorea jasminoides* (1 of 6 species), *Podranea ricasoliana* (monotypic), *Tecoma cochabambensis*, *T. fulva* and *T. stans* (3 of 12 species), *Tecomatic apensis* (1 of 2 species), and *Tecomaria capensis* (1 of 2 species).

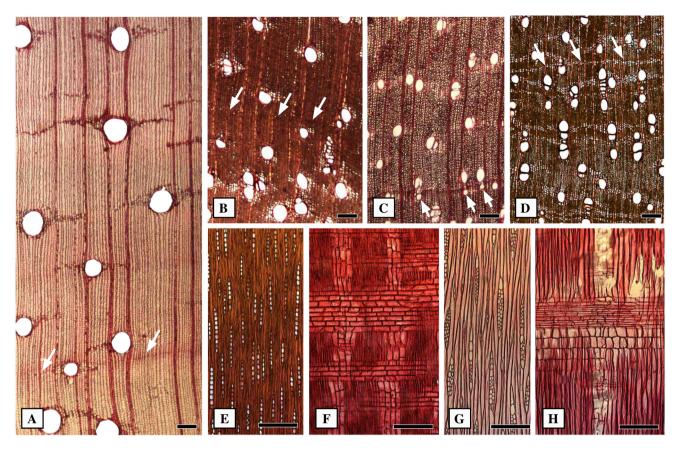


Fig. 3 Wood anatomy of Jacarandeae. a Jacaranda copaia, TS, winged-aliform parenchyma, with short confluences, and very wide vessels with about 300 µm. Growth rings delimited by radially flattened fibers (*arrows*). b Digomphia densicoma, TS, lozenge to winged-aliform parenchyma with short confluences, growth rings delimited by thicker-walled and radially flattened fibers (*arrows*). c Jacaranda puberula (section Dilobos), TS, winged-aliform parenchyma, with long confluences, growth rings delimited by thicker-

Diagnostic features

The wood anatomy of members of Tecomeae is fairly homogeneous (except for *Deplanchea bancana*), with most differences being associated with the habit. The wood of self-supporting Tecomeae is characterized by the combination of narrow vessels (generally in high frequencies; except in *Deplanchea bancana*), scanty paratracheal axial parenchyma (except *Deplanchea bancana*, with wingedaliform parenchyma with long confluences) and septate fibers. These characters are also encountered in the lianas, except for the vessel width, which reaches wider diameters in the lianas. The lianas also have vessel dimorphism. The rays are non-storied and heterocellular.

Detailed description

Growth rings are distinct, delimited by more abundant and wider vessels in the limits of the earlywood (Fig. 4a),

walled fibers associated with narrow vessels (*arrows*). **d**-**f** Jacaranda brasiliana (section Monolobos). **d** TS, Winged-aliform parenchyma, forming long confluences, growth rings delimited by a line of marginal parenchyma (*arrows*). **e** LT, uniseriate rays. **f** LR, homocellular rays. **g**, **h** Jacaranda puberula (section Dilobos). **g** LT, multiseriate and heterocellular rays. **h** LR, heterocellular rays with four rows of upright to square cells. Scale bars 200 µm

thick-walled and radially flattened fibers (Fig. 4b), and a line of marginal parenchyma (Fig. 4c). Very narrow vessels are sometimes associated with the marginal parenchyma (Fig. 4c). Porosity diffuse in the tropical species (Fig. 4b-d) and ring-porous to semi-ring porous (Fig. 4a) in the temperate and montane species (Table 1). Vessels are solitary to multiples of 2–3 (Fig. 4a, c, d), 2.54 \pm 1.28 vessels/group. In Tecomaria capensis vessels are solitary to multiples of 2-4 or more, radially disposed (Fig. 4b). Vessels are narrow $(55 \pm 12 \ \mu m)$, with higher values in the lianas, and the highest values in the earlywood of Campsis radicans (average 300 µm). Perforation plates are simple, sometimes foraminate in Deplanchea bancana. Intervascular pits are small (5-7 µm). Vessel-ray pits are similar in size and shape to the intervessel pits. Fibers are septate (Fig. 4e), thin- to thick-walled, with simple pits. Parenchyma is normally scanty paratracheal to vasicentric, winged-aliform in Deplanchea bancana, forming long confluences (Fig. 4d); a line of marginal parenchyma often

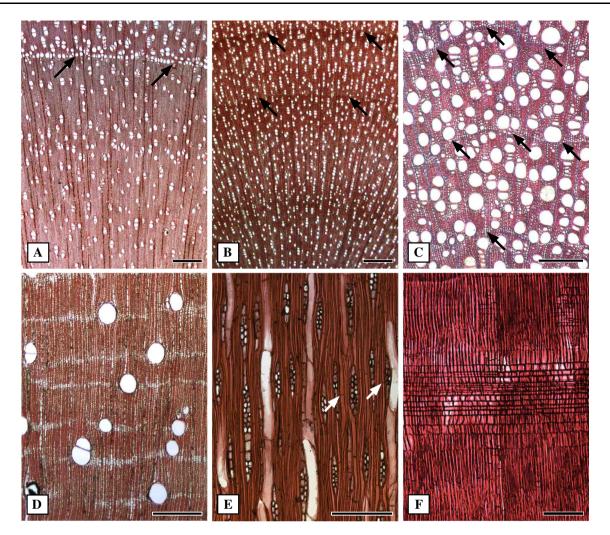


Fig. 4 Wood anatomy of Tecomeae s.s. a *Tecoma stans*, TS, semiring porous wood, narrow vessels solitary to multiple of 2–3, scanty paratracheal parenchyma. b *Tecomaria capensis*, TS, diffuse porous wood, narrow vessels, solitary to multiples of 2–4 or more common, radially disposed, growth rings delimited by thicker-walled and radially flattened fibers (*arrows*). c *Podranea ricasoliana*, TS, diffuse porous wood, growth rings delimited by a line of marginal

delimits the growth rings (Fig. 4c). Parenchyma strands have 3–4 cells in the trees and shrubs, and 5–8 cells per strand in the lianas. *Rays* are non-storied (to irregularly storied in some samples of *Tecoma stans*), 2–3-seriate, heterocellular with 2–4 marginal upright to square cells (Fig. 4e); in the lianas heterocellular with procumbent, square and upright cells mixed (except in *Campsis radicans*, which has heterocellular rays with 2–3 marginal upright to square cells). In *Deplanchea bancana* rays homo and heterocellular with one row of square cells co-occur.

Delostoma

We sampled *Delostoma integrifolium*, one of the four species recognized in this genus (Lohmann and Ulloa 2006 onwards).

parenchyma (*arrows*), vessel dimorphism present, scanty paratracheal parenchyma. **d** *Deplanchea bancana*, TS, diffuse porous wood, vessels solitary to multiples of 2–3, winged-aliform parenchyma with long confluences. **e** *Tecomaria capensis*, LT, biseriate heterogeneous rays, non-storied. **f** *Tecoma cochabambensis*, LR, heterocellular ray with body cells procumbent and three to four marginal upright to square cells. *Scale bars* **a–d** 500 µm, **e**, **f** 200 µm

Diagnostic features

In this species vessels are narrow, the parenchyma is scanty paratracheal, rays are non-storied, heterocellular with one row of square marginal cells co-occurring with homocellular rays, and fibers are septate (Fig. 5a–d).

Detailed description

Growth rings are distinct, delimited by a line of marginal parenchyma (Fig. 5a, b). Very narrow vessels are sometimes associated with the marginal parenchyma (Fig. 5b). *Porosity* diffuse (Fig. 5a, b). *Vessels* are solitary to multiples of 3–5, (Fig. 5a, b), 2.93 \pm 1.21 vessels/group, narrow (40 \pm 20 µm), with 46 \pm 20/mm² of frequency.

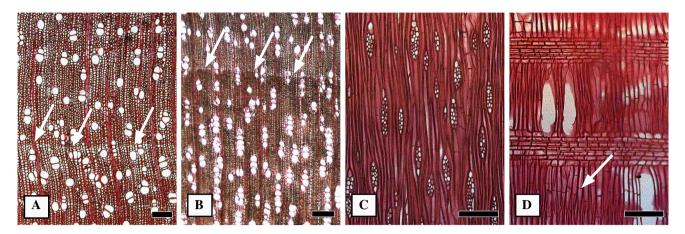


Fig. 5 Wood anatomy of *Delostoma integrifolium*. **a** TS, narrow vessels solitary to multiples of two to four, scanty paratracheal parenchyma to vasicentric, growth ring delimited by a line of marginal parenchyma. **b** TS, narrow vessels in radial arrangement,

scanty paratracheal parenchyma, growth ring delimited by a line of parenchyma and radially flattened fibers (*arrows*). **c** LT, rays two to three-seriate, non-storied. **d** LR, homocellular rays, septate fibers (*arrows*). *Scale bars* **a**, **c**, **d** 200 μ m, **b** 250 μ m

Perforation plates are simple. *Intervascular pits* are minute $(3-4 \mu m)$. *Vessel-ray pits* are similar in size and shape to the intervascular pits. *Fibers* are septate (Fig. 5d), thin- to thick-walled, with simple pits. *Parenchyma* is scanty paratracheal (Fig. 5a, b) to vasicentric, with a line of marginal parenchyma delimiting the growth rings (Fig. 5a, b). Parenchyma strands have 3–4 cells. *Rays* are non-storied, and predominantly 3-seriate (Fig. 5c, d), heterocellular with 1–2 rows of square marginal cells co-occurring with homocellular rays (Fig. 5c, d).

Crescentiina

Crescentiina are divided in two subclades, the *Tabebuia* alliance and the Paleotropical clade, each of which is described in detail below. Crescentiina are characterized by abundant, aliform confluent parenchyma, either with short or long confluences, short rays, generally homocellular or homocellular and heterocellular simultaneously, with the heterocellular rays having only one row of square marginal cells.

Tabebuia alliance (including Crescentieae)

We sampled 27 out of the 146 species currently included in the *Tabebuia* alliance, representing 13 out of the 14 genera currently included in this clade (Lohmann and Ulloa 2006 onwards); only *Romeroa*, a monotypic genus from Colombia, was not sampled. Sampling included *Amphitecna* (2 of 6 species), *Crescentia* (2 of 18 species), *Cybistax antisyphilitica* (monotypic), *Ekmanianthe* (both species), *Godmania* (1 of 2 species), *Handroanthus* (5 of 30 species), *Paratecoma peroba* (monotypic), *Parmentiera* (1 of 9 species), Roseodendron (1 of 2 species), Sparattosperma (1 of 2 species), Spirotecoma (1 of 4 species), Tabebuia (7 of 67 species), Zeyheria (both species). Of these, Amphitecna, Crescentia, and Parmentiera belong to tribe Crescentieae, a monophyletic group nested within the Tabebuia alliance.

Diagnostic features

The wood of representatives of the *Tabebuia* alliance is characterized by the small to medium vessels, associated with abundant vasicentric to aliform axial parenchyma with short to long confluences. All genera have storied or irregularly storied axial and radial elements. Fibers are non-septate. Lapachol (yellow compound) was encountered in the heartwood of a few genera, such as *Ekmanianthe*, *Godmania*, *Handroanthus* and *Zeyheria*.

Detailed description

Growth rings are distinct, delimited by a line (Fig. 6a, c, d) or band (Fig. 6b) of marginal parenchyma, sometimes associated with very narrow vessels (Fig. 6c), thick-walled and radially flattened fibers (very common in *Handroan*-thus and *Tabebuia*), and in some species dilated rays (e.g., *Handroanthus impetiginosus*, *H. serratifolius*, *Paratecoma peroba*, *Sparattosperma leucanthum*). Porosity diffuse (Fig. 6a, b, d) to semi-ring porous (Fig. 6c). Vessels are solitary to multiples of 2–3, 1.62 ± 0.30 vessels/group, arranged tangentially in *Cybistax antisyphilitica*, narrow ($60 \pm 26 \mu$ m) in most genera, medium in *Handroanthus* and *Sparattosperma* ($134 \pm 45 \mu$ m), numerous ($20 \pm 12/$

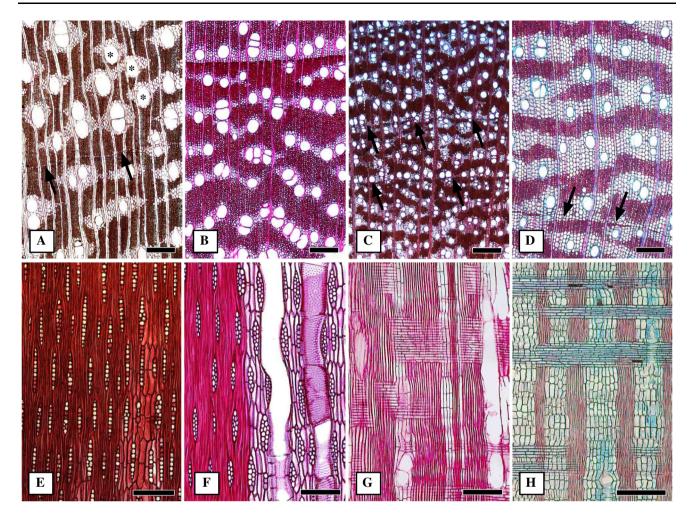


Fig. 6 Wood anatomy of the *Tabebuia* alliance (including Crescentieae). **a** *Handroanthus barbatus*, TS, diffuse porous wood, paratracheal aliform parenchyma, predominantly unilateral around certain vessels (*asterisks*), with short confluences, thick-walled fibers, growth rings delimited by a line of marginal parenchyma (*arrows*). **b** *Tabebuia roseoalba*, TS, diffuse-porous wood, aliform parenchyma, sometimes unilateral, with short confluences, growth rings delimited by a band of marginal parenchyma. **c** *Zeyheria montana*, TS, diffuse porous wood, aliform parenchyma with short to long confluences, thick walled fibers, growth rings delimited by a line of marginal barenchyma with short to long confluences, thick walled fibers, growth rings delimited by a line of marginal

mm²), 43 \pm 4/mm² in *Cybistax antisyphilitica. Deposits* of lapachol are common in *Handroanthus* and *Zeyheria. Perforation plates* are simple, sometimes foraminate in *Tabebuia, Spirotecoma, Crescentia* and *Parmentiera. Intervessel pits* vary from small (~5 µm in *Roseodendron donnel-smithii*) to large (~18 µm in *Handroanthus chrysotrichus*). *Vessel-ray pits* are similar in size and shape to the intervessel pits. *Fibers* are non-septate, thin- to thickwalled and frequently very thick walled (e.g., *Handroanthus, Paratecoma peroba, Zehyeria*; Fig. 6a, c). *Parenchyma* ranges from vasicentric to aliform, forming short (Fig. 6a, b) to long confluences (Fig. 6c, d), usually forming bands (Fig. 6d). Unilateral aliform parenchyma

parenchyma (*arrows*). **d** *Crescentia cujete*, TS, diffuse porous wood, abundant aliform parenchyma with long confluences forming bands, growth rings delimited by a line of marginal parenchyma. **e** *Crescentia alata*, LT, axial and radial elements storied, uniseriate rays, sometimes biseriate, two cells per parenchyma strand. **f** *Handroanthus chrysotrichus*, LT, all axial and radial elements storied, biseriate rays, parenchyma paratracheal with two cells per strand, large intervessel pits. **g** *Tabebuia fluviatilis*, LR, homocellular rays. **h** *Crescentia cujete*, LR, abundant axial parenchyma, homocellular rays. *Scale bars* **a**, **b**, **d**, **g**, **h** 100 µm, **c** 500 µm, **e**, **f** 200 µm

(Fig. 6a, b) is common in some species (e.g., *Handroanthus albus, H. impetiginosus, Tabebuia roseoalba*). A gradual change from aliform, to aliform-confluent with short to long confluences and finally a marginal band within each growth ring is found in some members of this clade (*Crescentia alata, Handroanthus* and *Tabebuia*). All sampled species of *Amphitecna, Cybistax antisyphilitica, Crescentia alata* and some species of *Handroanthus* (e.g., *Handroanthus barbatus, H. chrysotrichus, H. impetiginosus*; Fig. 6e, f) have 2 cells per parenchyma strand, while others have 2–4 cells (e.g., *H. serratifolium*). *Rays* are usually storied (Fig. 6e, f) or irregularly storied, uniseriate (Fig. 6e) to 2–3-seriate (Fig. 6f), generally homocellular (Fig. 6g, h), although homocellular and heterocellular rays with one marginal row of square cells are present in *Godmania aesculifolia*, *Sparattosperma leucanthum*, and in both species of *Zeyheria* sampled.

Paleotropical clade (including Coleeae)

We sampled 22 of the 139 species currently recognized in the Paleotropical clade, representing 15 out of the 19 genera currently included in this group (Lohmann and Ulloa 2006 onwards); only Phylloctenium (ditypic genus from Madagascar), Dinklageodoxa (monotypic genus from Liberia), and Rhigozum (seven species from Tropical Africa and Madagascar) were not sampled. More specifically, we sampled Catophractes alexandri (monotypic), Colea (2 of 21 spp), Dolichandrone (2 of 10 species), Fernandoa (2 of 14 species), Heterophragma (both species), Kigelia africana (monotypic), Markhamia (2 of 10 species), Newbouldia laevis (monotyic), Ophiocolea floribunda (1 of 5 species), Pajanelia longifolia (monotypic), Phyllarthron bojeranum (1 of 15 species), Radermachera (5 of 18 species), Rhodocolea (3 of 7 species), Spathodea campanulata (monotypic), Stereospermum chelonoides (1 of 20 species), and Tecomella undulata (monotypic). Of these, Colea, Ophiocolea, Phyllarthron, and Rhodocolea belong to tribe Coleeae, a monophyletic group nested within the Paleotropical clade.

Diagnostic features

The wood anatomy of most species from the Paleotropical clade is distinctive in having abundant paratracheal aliform confluent parenchyma, with short to long confluences, medium vessels, non-storied, 2–3-seriate, co-occurring homo and heterocellular rays, and thick walled, non-septate fibers. However, Coleeae differ from the rest of the clade by its apotracheal diffuse axial parenchyma that co-occurs with paratracheal vasicentric to aliform parenchyma, thin-to very thick-walled fibers, narrow vessels and homocellular uniseriate rays.

Detailed description

Growth rings are distinct, delimited by a line of marginal parenchyma associated with very narrow vessels (Fig. 7a, b), vessels of larger diameter (Fig. 7b), ticker-walled and radially flattened fibers (Fig. 7b), and sometimes dilated rays (e.g., *Fernandoa adenophylla*, *Markhamia lutea*, *Tecomella undulata*). *Porosity* is diffuse (Fig. 7a, e, f) or semi-ring porous (Fig. 7b), especially in species growing in more arid areas (e.g. *Catophractes alexandri*). *Vessels* are solitary or in multiples of 2–3 (Fig. 7a, b, e, f), 1.51 \pm 0.44

vessels/group, medium (110 \pm 20 μ m), except in Coleeae, where they are narrow (60 \pm 10 μ m; Fig. 7f); frequencies are variable, ranging from 8 to 10/mm² in *Kigelia africana* and Spathodea campanulata to 24-40/mm² in Tecomella undulata, Radermachera glandulosa, and species of tribe Coleeae. Intervessel pits are small (4-5 µm) to minute in tribe Coleeae (<3 µm). Vessel-ray pits are similar in size and shape to intervessel pits. Fibers are thin- (Fig. 7b) to very thick-walled (Fig. 7a, e), with simple pits and occasionally septate. Within tribe Coleeae fibers are thin-walled in Colea and Ophiocolea and very thick-walled in Rhodocolea and Phyllarthron. Fibers are always septate in the sampled species of Heterophragma, Radermachera, and Pajanelia longifolia. Parenchyma is paratracheal vasicentric to aliform, with short (Fig. 7e) to long confluences (Fig. 7a, b). Apotracheal diffuse parenchyma is present in all genera from tribe Coleeae (Fig. 7e, f), less abundantly in Phyllarthron bojeranum and Rhodocolea, always cooccuring with paratracheal vasicentric to aliform parenchyma, with short to long confluences in Rhodocolea multiflora and R. nycteriphilla. Usually 3-4 cells per parenchyma strand (2 cells in Spathodea campanulata). Rays are non-storied, 3-4-seriate (Fig. 7c), homocellular (Fig. 7d) and heterocellular with one row of marginal square cells common (Fig. 7c). In representatives of tribe Coleeae rays are exclusively unicellular and homocellular (Fig. 7g, h), similarly to Dolichandrone atrovirens, Kigelia africana, Stereospermum leucanthum, and Tecomella undulata (which fall outside Coleeae).

Oroxyleae

We sampled *Millingtonia hortensis* (monotypic) and *Or*oxylum indicum (monotypic), two of the four genera and six species currently recognized in the tribe (Lohmann and Ulloa 2006 onwards). Only *Nyctocalos* (three species) and *Hieris curtisii* (monotypic), both lianas from Malesia, were not sampled.

Diagnostic features

The wood of Oroxyleae can be recognized by a unique combination of vessels with foraminate perforation plates, co-occurring with vessels of simple perforation plates, paratracheal vasicentric to aliform parenchyma, homocellular and non-storied rays, fibers generally nonseptate.

Detailed description

Growth rings are distinct, delimited by a line of marginal parenchyma (Fig. 8a), thicker-walled and radially flattened

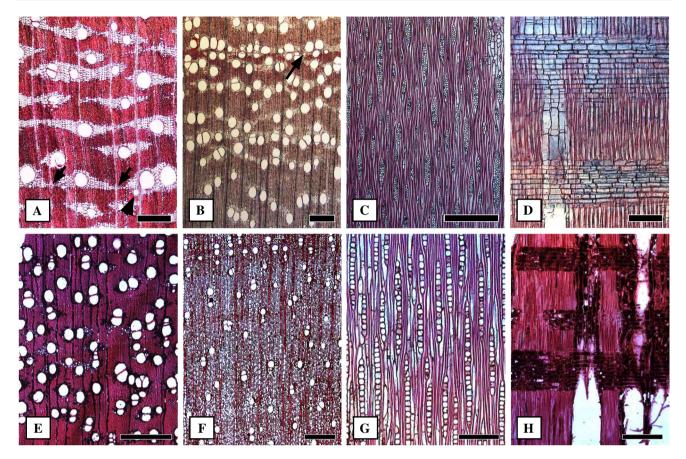


Fig. 7 Wood anatomy of the Paleotropical clade (including Coleeae). a *Stereospermum chelonoides*, TS, diffuse porous wood, vessels solitary to multiples of 2–3, growth rings delimited by a line of marginal parenchyma (*arrows*) associated with narrow vessels (*arrowhead*), paratracheal aliform parenchyma with short confluences. b *Markhamia lutea*, TS, semi-ring porous wood, vessels solitary to multiples 2–3, growth rings delimited by wide vessels and a line of marginal parenchyma associated with narrow vessels (*arrow*), aliform parenchyma with short to long confluences. c *Spathodea campanulata*, LT, rays 2–3-seriate, non-storied.

fibers, and dilated rays. Porosity diffuse (Fig. 8a, e). Vessels are solitary or in multiples of 2–3 (Fig. 8a, e), 1.59 ± 0.49 vessels/groups, narrow in Millingtonia hortensis $(80 \pm 26 \ \mu\text{m}; \text{Fig. 8a})$ and medium in *Oroxylum indicum* $(179 \pm 16 \text{ }\mu\text{m}; \text{Fig. 8e}); 25 \pm 8/\text{mm}^2 \text{ of frequency in } Mil$ *lingtonia hortensis* (Fig. 8a) and fewer, $4 \pm 4/\text{mm}^2$, in Oroxylum indicum (Fig. 8e). Vessels with foraminate perforation plates are common (Fig. 8d, h) co-occurring with vessels with simple perforation plates (more frequent). In Millingtonia hortensis, a combination of foraminate and reticulate perforation plates is frequently found at the same plate (Fig. 8d). Intervessel pits are small (4–5 µm). Vesselray pits are similar to the intervessel pits in size and shape. Fibers are thin- to thick-walled (Fig. 8a, e), with simple pits, non-septate to occasionally septate in some individuals of Oroxylum indicum. Parenchyma is vasicentric (Fig. 8a) to aliform (Fig. 8e), both with short confluences; 3-4 cells per

d *Heterophragma roxburghii*, LR, homocellular rays. **e**–**h** Tribe Coleeae. **e** *Rhodocolea telfairae*, TS, diffuse porous, vessels solitary to multiples of 2–3, paratracheal aliform parenchyma with short confluences, and scanty diffuse apotracheal parenchyma, fibers very thick-walled. **f** *Ophiocolea floribunda*, TS, vessels solitary to multiples of 2–3, abundant apotracheal diffuse parenchyma combined with vasicentric paratracheal parenchyma, fibers thin-walled. **g** *Ophiocolea floribunda*, LT, uniseriate rays, non-storied. **h** *Rhodocolea telfairiae*, LR, homocellular rays. *Scale bars* **a**, **c**, **e**, **f** 500 µm, **b** 1 mm, **d**, **g**, **h** 200 µm

parenchyma strand. *Rays* are homocellular (Fig. 8c, g), 3-seriate and non-storied (Fig. 8b, f).

Catalpeae

We sampled *Chilopsis linearis* (monotypic), and *Catalpa* (3 out of the 11), representing the two genera currently included in this clade (Lohmann and Ulloa 2006 onwards). In *Catalpa*, we sampled species from section *Macrocatalpa* (*Catalpa longissima*), and section *Catalpa* (*Catalpa big-nonioides* and *Catalpa speciosa*).

Diagnostic features

Catalpeae are distinctive for the semi-ring porous to ringporous wood found in *Chilopsis linearis* and *Catalpa*

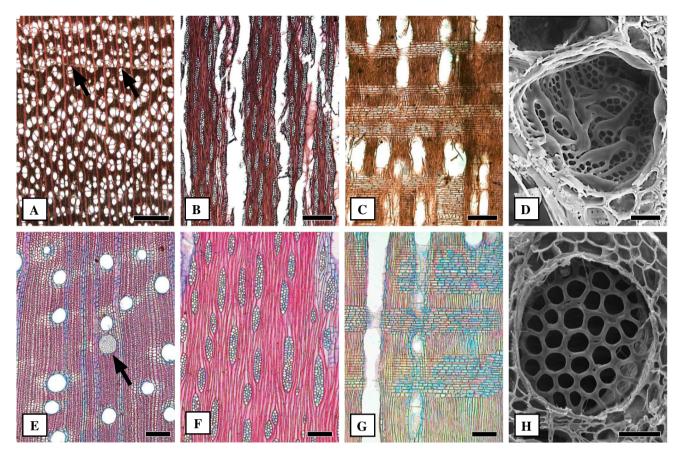


Fig. 8 Wood anatomy of Oroxyleae. **a-d** *Millingtonia hortensis.* **a** TS, vessels solitary to multiples of two to four, growth ring delimited by a line of marginal parenchyma (*arrows*) and thickerwalled and radially flattened fibers, vasicentric parenchyma, with short confluences. **b** LT, rays 3-seriate, non-storied. **c** LR, rays homocellular. **d** Scanning electron microscopy (SEM) of a vessel with a combination of foraminate and reticulate perforation plate together,

(section *Catalpa*), as well as the presence of scanty paratracheal to vasicentric confluent parenchyma. In *Catalpa* (section *Macrocatalpa*) the parenchyma is aliform confluent. Tyloses are abundant in both sections, as are the septate fibers in the tropical and subtropical species (*Chilopsis linearis* and *C. longissima*) and the unique presence of simple to semi bordered vessel-ray pits.

Detailed description

Growth rings are distinct, delimited by a band of marginal parenchyma, vessels of two different diameters in *Chilopsis linearis* (Fig. 9c), *Catalpa speciosa* and *C. bignonioides* (section *Catalpa*; Fig. 9a), thicker-walled and radially flattened fibers. *Porosity* diffuse in *Catalpa longissima* (section *Macrocatalpa*; Fig. 9b), and semi-ring porous to ring-porous in *Catalpa speciosa*, *C. bignonioides* (section *Catalpa*; Fig. 9a), and *Chilopsis linearis* (Fig. 9c). *Vessels* are solitary or in multiples of 2–3, 1.43 ± 0.12

typical of this species. **e**, **f** *Oroxylum indicum*. **e** TS, solitary vessels common, paratracheal aliform parenchyma with short confluences, foraminate perforation plate (*arrow*). **f** LT, rays 3-seriate, non-storied. **g** LR, rays homocellular. **h** SEM of a vessel with foraminate perforation plate. *Scale bars* **a** 500 μm, **b**, **c**, **e**-**g** 200 μm, **d** 20 μm, **h** 50 μm

vessels/group in earlywood and tropical specimens, 19.27 ± 7.59 vessels/group in latewood, wide vessels with $200 \pm 18 \ \mu\text{m}$ in the semi-ring to ring-porous woods (i.e., Catalpa section Catalpa + Chilopsis), and medium vessels with $131 \pm 10 \ \mu m$ in Catalpa longissima (section Mac*rocatalpa*); narrow vessels of latewood of $30 \pm 6 \mu m$; and frequency of $12 \pm 5/\text{mm}^2$ in Catalpa speciosa and 34 ± 10 /mm² in *Chilopsis linearis*. Helical thickening is present in all vessels of Catalpa speciosa (section Catalpa) and Chilopsis linearis. Perforation plates are simple (Fig. 9f). Intervessel pits are small (5-7 µm). Vessel-ray pitting is simple to semi-bordered. Fibers are septate in the tropical and subtropical species (Fig. 9d, e) and non septate in the temperate species (Table 1), thin- to thick-walled, with simple pits. Parenchyma is scanty paratracheal to vasicentric in Catalpa speciosa and Catalpa bignonioides (section Catalpa) and Chilopsis, vasicentric forming bands when associated with the narrow vessels in the latewood of Chilopsis linearis. Bands of marginal parenchyma are

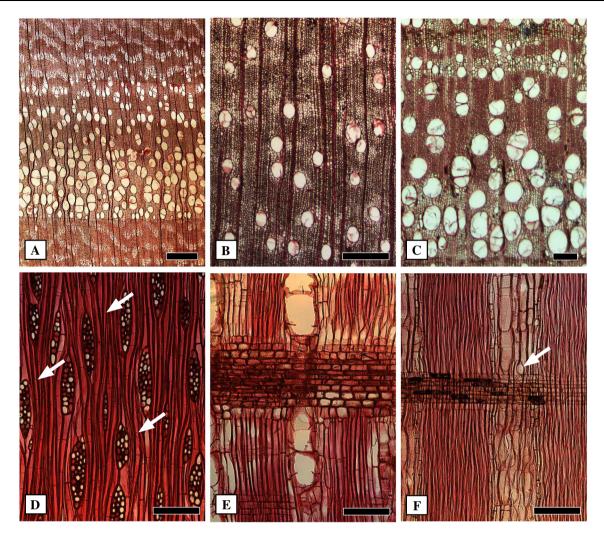


Fig. 9 Wood anatomy of Catalpeae. a *Catalpa speciosa* (section *Catalpa*), TS, semi-ring porous wood, earlywood vessels solitary to multiples of 2–3, associated with a band of marginal parenchyma, latewood vessels in clusters, scanty paratracheal parenchyma, tyloses common. b *Catalpa longissima* (section *Macrocatalpa*), TS, wood diffuse porous, vessels solitary to multiples of 2–3, parenchyma aliform, with short confluences, tyloses common. c *Chilopsis linearis*, TS, semi-ring porous wood, earlywood vessels solitary to multiples of

present. In *Catalpa longissima* (section *Macrocatalpa*), the parenchyma is aliform with short confluences (Fig. 9b). Parenchyma strands have 3–4 cells, as seen in tangential section. *Rays* are 3-seriate, non-storied (Fig. 9d), and heterocellular with one row of marginal square cells (Fig. 9e, f) co-occurring with homocellular rays.

Bignonieae

We sampled all 21 genera and 49 out of the 393 species currently included in Bignonieae (sensu Lohmann and Taylor 2014). Sampling included *Adenocalymma* (8 of 82), *Amphilophium* (5 of 47), *Anemopaegma* (1 of 45), *Bignonia* (4 of 28), *Callichlamys latifolia* (monotypic), 2–3, associated with a band of marginal parenchyma, latewood vessels generally in multiples, with paratracheal vasicentric parenchyma forming bands, tyloses common. **d** *Catalpa longissima*, LT, 2–3seriate rays, non-storied, septate fibers common (*arrows*). **e** *Chilopsis linearis*, LR, heterocellular rays with one row of square marginal cells. **f** *Catalpa speciosa*, LR, heteroellular ray, narrow vessels in clusters, showing simple perforation plates. *Scale bars* **a** 500 µm, **b**–**f** 200 µm

Cuspidaria (2 of 19), Dolichandra (2 of 8), Fridericia (5 of 67), Lundia (3 of 13), Manaosella cordifolia (monotypic), Mansoa (3 of 12), Martinella (1 of 2), Neojobertia (both species), Pachyptera (1 of 4 species), Perianthomega vellozoi (monotypic), Pleonotoma (3 of 17 species), Pyrostegia (1 of 2 species), Stizophyllum (1 of 3 species), Tanaecium (3 of 17 species), Tynanthus (1 of 15 species), and Xylophragma (2 of 7 species).

Diagnostic features

Bignonieae are characterized by the presence of a cambial variant, denominated furrowed xylem, with four or multiples of four phloem wedges that interrupt the xylem

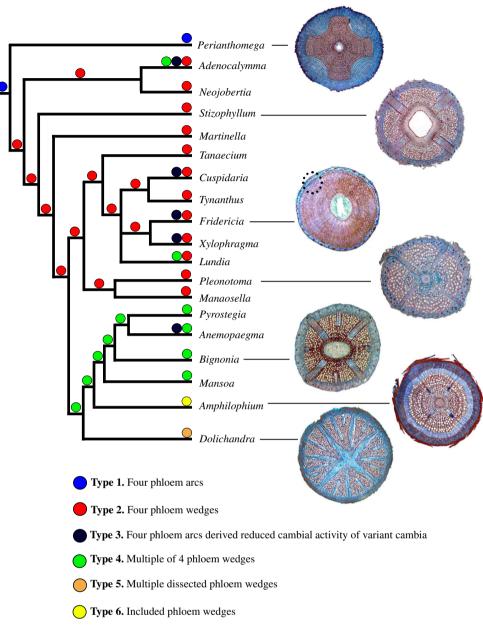


Fig. 10 Phylogenetic mapping of the six types of cambial variants found in Bignonieae; entire stem, as seen in transverse sections. *Type 1 Perianthomega vellozoi*, four broad phloem arcs. *Type 2 Stizophyllum riparium* and *Pleonotoma tetraquetra*, four phloem wedges. *Type 3 Fridericia platyphylla*, four narrow phloem arcs derived from a

(Fig. 10). The wood anatomy of members of Bignonieae is characterized by scanty paratracheal to vasicentric axial parenchyma, generally tall (>1 mm) and heterocellular rays, and septate fibers (Fig. 11)

Cambial variants in Bignonieae have the conspicuous form of a cross in transverse section (Fig. 10). The stems of Bignonieae can be sorted in six types, according to the form and distribution of the phloem arcs/wedges. *Type 1* corresponds to four broad equidistant phloem arcs (Fig. 10) and is exclusive of *Perianthomega*, a monotypic genus that

reduced activity of the variant cambia, typical of shrub species. *Type* 4 Bignonia binata, multiple of four phloem wedges. *Type* 5 Dolichandra unguis-cati, multiple dissected phloem wedges. *Type* 6 Amphilophium crucigerum, included phloem wedges

is sister to all other Bignonieae. In this type, the cambium lines the entire stem circumference, without disjunctions. *Type 2* corresponds to four equidistant phloem wedges, formed by the presence of a cambial disjunction and inclusion within the phloem wedges (Fig. 10). Type 2 is most common in Bignonieae, and is present in 12 of the 21 genera of the tribe (Fig. 10). *Type 3* corresponds to four narrow phloem arcs (Fig. 10) derived from delayed development of the phloem wedges and is typical of the shrubby species. This type was recorded in *Adenocalymma*

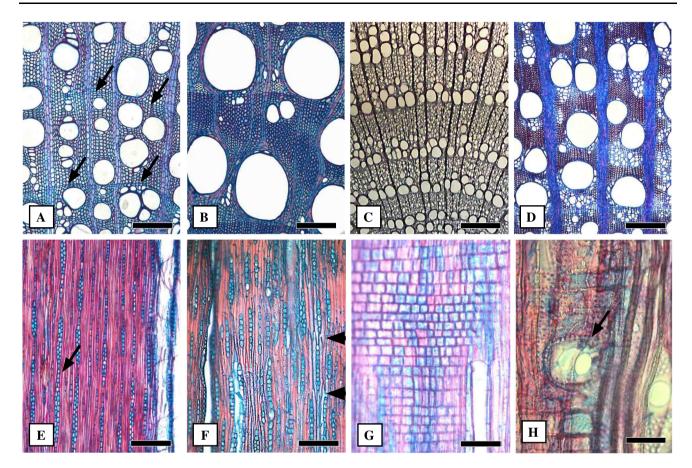


Fig. 11 Wood anatomy of Bignonieae. a Mansoa difficilis, TS, diffuse porous wood, growth rings delimited by thick-walled and radially flattened fibers (arrows), vessel dimorphism present. b Tynanthus cognatus, TS, semi-ring porous wood, delimited by radially flattened fibers and a marginal band of parenchyma, vessel dimorphism present. Wide vessels generally solitary. c Bignonia capreolata, TS, ring porous wood. d Amphilophium crucigerum, TS, diffuse porous wood, wide vessels generally solitary, combined with clusters

nodosum, A. peregrinum, Cuspidaria pulchra, and Fridericia platyphylla, all shrubs growing in the Cerrado (Brazilian savannah). The wedges may be very reduced making it impossible to detect without magnification (circled in Fig. 10). Type 4 corresponds to multiple of four phloem wedges. These species start their development with four phloem wedges, but form additional wedges between the previous ones, always in multiples of four. This type is encountered in the all species from the clade formed by Amphilophium, Anemopaegma, Bignonia, Dolichandra, Mansoa, and Pyrostegia, in most species of Lundia and a few Adenocalymma (Fig. 10). Amphilophium and Dolichandra, however, go further in their development generating the next two types to be described. Type 5 corresponds to the 'multiple dissected type,' in which multiple of four phloem wedges are also formed, and in which the proliferation of unlignified axial and ray parenchyma dissects the secondary xylem in pieces. The presence of unlignified axial and ray

of narrow vessels, wide rays. **e** *Stizophyllum riparium*, LT, biseriate rays, fusion of rays common (*arrow*). **f** *Dolichandra unguis-cati*, LT, uniseriate and short rays storied. Fibers also storied (*arrows*). **g** *Fridericia speciosa*, LR, heterocellular mixed rays. **h** *Neojobertia mirabilis*, LR, perforated ray cell (*arrow*) with simple perforation plate. *Scale bars* **a**, **b**, **e**, **f** 200 μm, **c** 800 μm, **d** 300 μm, **g** 150 μm, **h** 40 μm

parenchyma in the xylem, which produces this type, is exclusive to *Dolichandra* (Fig. 10). *Type 6* corresponds to the 'included phloem wedges type,' in which multiple of four phloem wedges are formed, but are gradually occluded by the regular cambium at the top of the phloem wedges, eventually including the secondary phloem within the secondary xylem. This type is exclusive to *Amphilophium* (Fig. 10).

Detailed description

Growth rings are distinct and are delimited by a line or band of marginal parenchyma (Fig. 11a, b), very narrow vessels, thicker-walled and radially flattened fibers (Fig. 11a, b) and dilated rays (Fig. 11b). Discontinuous and merging growth rings are common. *Porosity* usually semiring porous (Fig. 11b) to diffuse porous (Fig. 11a). The sole species growing in temperate latitudes, *Bignonia* capreolata, has ring-porous wood (Fig. 11c). Vessels exhibit dimorphism, with wide and narrow vessels combined (Fig. 11a-b, d); wide vessels with $240 \pm 60 \ \mu m$, predominantly solitary in some species (e.g., Amphilophium crucigerum, Stizophyllum riparium, Lundia damazii) to solitary and multiples of 2-3 (Fig. 11a-d), 2.57 ± 0.91 vessels/group. Narrow vessels ($20 \pm 6 \mu m$) usually have a conspicuous arrangement, such as radial rows, around the wide vessels or in clusters (Fig. 11d). Frequency >50/mm². Perforation plates are simple. Intervessel pits are medium (8-10 µm in diameter). Vessel-ray pits are similar to intervessel pits in size and shape. Fibers are septate in most species, thin- to thick-walled (Fig. 11a, b, d), and with simple pits. Parenchyma is scanty paratracheal in most species (Fig. 11a), except for the clade formed by Cuspidaria, Fridericia, Lundia, Tanaecium, Tynanthus, and Xylophragma (Fig. 11b; the Arrabidaea and allies clade in Lohmann 2006) and Callichlamys latifolia (not assigned to any clade; Lohmann 2006) in which vasicentric to aliform parenchyma with short confluences and a marginal band of parenchyma are present (Fig. 11b). Rays are heterocellular mixed (Fig. 11g), higher than 1 mm in most species, with variable width, ranging from uniseriate and short (e.g., Dolichandra unguis-cati; Fig. 11f), 2-4 cells wide (e.g., Stizophyllum riparium; Fig. 11e) and others are wider (Fig. 11d), 5-10 cells wide (e.g., Amphilophium crucigerum). The wood under the phloem wedges (variant secondary xylem) has narrower vessels, and rays unicellular and short. An increase in ray width was observed in some species from the stem center towards the bark (e.g. Amphilophium crucigerum). Fusion of rays is common in all species (Fig. 11e). Storied structure is absent in most species, but present in the axial, ray parenchyma and fibers of Dolichandra (Fig. 11f), and in the fibers of Perianthomega vellozoi and all sampled species of Amphilophium, and Mansoa. Perforated ray cells vary from very abundant (e.g., Dolichandra unguis-cati; Stizophyllum riparium; Fig. 11h) to rare (e.g., Perianthomega vellozoi). Silica is present in the ray cells of Pachyptera kerere.

Discussion

Molecular phylogenetic studies of Bignoniaceae have indicated that several tribes and genera were not monophyletic as traditionally recognized (Spangler and Olmstead 1999; Zjhra et al. 2004; Lohmann 2006; Grose and Olmstead 2007a, b; Li 2008; Olmstead et al. 2009), leading to many changes in the circumscription of taxa within the family. While most of the genus-level clades recognized are well supported by molecular and morphological characters (Grose and Olmstead 2007b; Lohmann and Taylor 2014), several of the higher-level clades (i.e., comparable to tribal level), however, still lack morphological synapomorphies (Olmstead et al. 2009). In this study, we investigate the wood anatomy of representatives of all major lineages of the Bignoniaceae (except Tourretieae), highlighting the most conspicuous features of each clade (Table 2; Fig. 12), providing a thorough description of their wood anatomy, and suggesting potential synapomorphies (Table 3). The new systematic arrangement of the Bignoniaceae led to more homogeneous and predictable wood anatomical groups (Table 2; Fig. 12). Key features of each clade are summarized and discussed below.

Jacarandeae were originally described as a tribe by Bentham and Hooker (1876) and later treated as part of Tecomeae s.l. (Gentry 1980; Fischer et al. 2004), but has been resurrected as a tribe and is now known to be sister to all other Bignoniaceae (Olmstead et al. 2009). The two genera of Jacarandeae, Digomphia and Jacaranda, share wood anatomical traits that are common to other Bignoniaceae, such as the marginal parenchyma delimiting the growth rings, and paratracheal aliform parenchyma. However, Digomphia and Jacaranda share the presence of narrow vessels, winged-aliform parenchyma (more conspicuous in Jacaranda), and non-storied rays, which supports the circumscription of this tribe. Wood anatomical traits also support the traditional division of Jacaranda into sections Monolobos and Dilobos (Dos Santos and Miller 1997), which were delimited on the basis of number of anther thecae, one or two, respectively. Jacaranda section Monolobos is characterized by homocellular and uniseriate rays, while Jacaranda section Dilobos is characterized by heterocellular and multiseriate rays (Dos Santos and Miller 1997). The only exception to this rule is in Jacaranda copaia, which is currently assigned to section Monolobos, but has anatomical traits that are intermediate between both sections, having multiseriate rays of homocellular composition, and has a unique wood anatomy within the tribe, having the widest vessels in Bignoniaceae trees $(\sim 300 \ \mu m)$. Additional sampling of Jacaranda in molecular phylogenetic studies is still needed in order to test the monophyly of the Jacaranda sections as traditionally circumscribed. Jacaranda is an ideal genus for further comparative anatomical studies since it presents a great deal of diversity of habits, from underground xylopodial shrubs and subshrubs in the Cerrado, treelets, medium-sized to very tall fast-growing trees in forests (e.g. Jacaranda copaia), and twigs were shown to represent consistently the wood anatomy of the main trunk wood in the genus (Dos Santos and Miller 1997).

Tecomeae sensu Olmstead et al. (2009) are much more narrowly circumscribed than the tribe Tecomeae previously recognized (Gentry 1992; Fischer et al. 2004). Even though morphological features are still lacking to diagnose this widely distributed tribe (occurring in America, Africa,

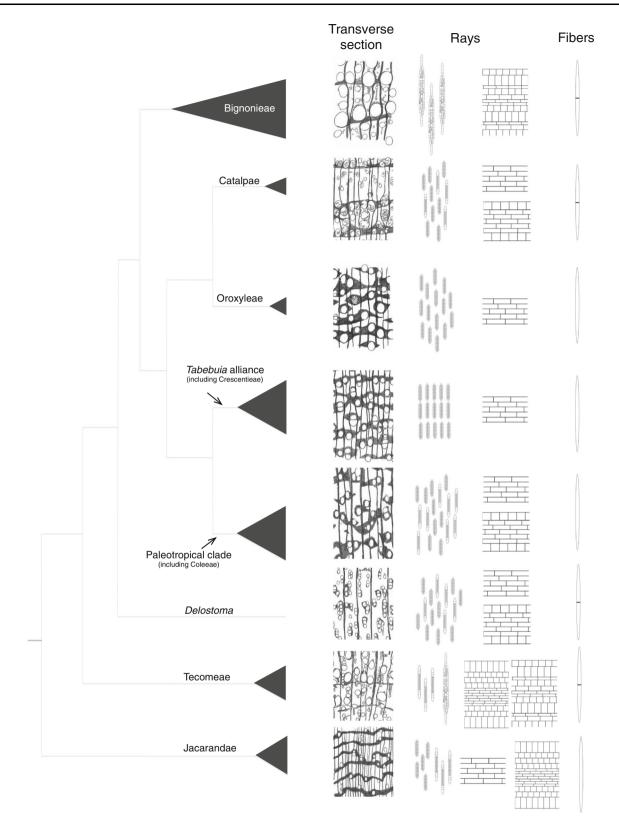


Fig. 12 Drawing summarizing of the most conspicuous wood anatomical features of major Bignoniaceae clades

Table 3 Potential wood anatomical synapomorphies

Taxa	Anatomical synapomorphy
Jacarandeae	Axial parenchyma winged-aliform
Catalpeae	Vessel-ray pits simple to semi-bordered
Oroxyleae	Foraminate perforation plates common
Bignonieae	Cambial variant: xylem furrowed by four to multiple of four phloem arcs/wedges
Tabebuia alliance	Storied structure
Coleeae	Diffuse axial parenchyma
Amphilophium	Included phloem wedges
Dolichandra	Multiple dissected phloem wedges derived of unlignified parenchyma proliferation
Perianthomega	Four broad phloem arcs

Asia and Oceania; see Olmstead et al. 2009), Tecomeae s.s. are quite homogeneous in wood anatomy (except from *Deplanchea*, whose wood anatomy looks very much like Jacarandeae), combining features that set aside members of Tecomeae from most other Bignoniaceae. In particular, heterocellular rays with body procumbent and several marginal upright to square cells to heterocellular mixed in some lianas (e.g., *Pandorea jasminoides*), septate fibers, scanty paratracheal parenchyma, and rather narrow vessels (except in the lianas) characterize all members of this clade.

Delostoma is a clade of four species of Neotropical treelets and shrubs. Traditionally, *Delostoma* was included within Tecomeae s.l. (Gentry 1980; Fischer et al. 2004), however, *Delostoma*, which bears simple leaves and double calyx, has been difficult to relate to either Paleotropical or Neotropical Bignoniaceae both morphologically (Gentry 1980) and wood anatomically (Dos Santos and Miller 1992). In the most recent phylogeny of Olmstead et al. (2009), *Delostoma* emerged in its own clade, not closely related to any other representatives of Bignoniaceae. Wood anatomically this genus is most similar to Tecomeae s.s., exhibiting heterocellular rays, septate fibers and small vessels usually in radial disposition. It differs from other Tecomeae mainly by the longer tracheary elements (Dos Santos and Miller 1992).

The *Tabebuia* alliance (Olmstead et al. 2009) are composed primarily of Neotropical trees and shrubs with palmately compound leaves; only a few members have simple leaves (e.g., *Crescentia*, *Tabebuia nodosa*). Members of several genera within this clade have invaluable timbers for interior and civil construction (e.g., *Handroanthus*, *Roseodendron*, *Cybistax*, *Paratecoma*). *Tabebuia* s.l., the largest genus within this clade, was shown to be polyphyletic (Grose and Olmstead 2007a) and subdivided in three smaller genera (Grose and Olmstead 2007b): *Tabebuia* (67 species), *Handroanthus* (30 species), and *Roseodendron* (two species).

Wood anatomical traits strongly support the new generic circumscription. More specifically, the Tabebuia Group I proposed by Dos Santos and Miller (1992), which coincides with the Lapacho group of Record and Hess (1943), is characterized by very dense wood and high specific gravity (higher than 0.74), olive brown to blackish heartwood, abundant lapachol in the heartwood vessels, coinciding perfectly with Handroanthus. Additional anatomical features of this clade are the large intervessel pits (usually $>10 \mu m$), very thick-walled fibers, storied structure and 2-3-seriate rays. The Bignoniaceae species with greatest economical value due to the high quality timber (Record and Hess 1943; Gentry 1992) are now included in this genus. In addition, Tabebuia Groups II and III proposed by Dos Santos and Miller (1992) correspond to the newly circumscribed Tabebuia s.s. (Grose and Olmstead 2007b). This clade is characterized by the medium basic specific gravity (0.40-0.74), light colored heartwood, not very distinct heartwood and sapwood, and lack of lapachol (Dos Santos and Miller 1992), as well as by small intervessel pits $(5-8 \mu m)$, 1–2 seriate rays, that are irregularly storied to storied, and thin to thick-walled fibers. Finally, Tabebuia chrysea and Tabebuia donnell-smithii, two of four species that did not belong to Groups I, II, or III proposed by Dos Santos and Miller (1992), are now treated under Roseodendron. The other two species, Tabebuia nodosa and Tabebuia fluviatilis are also considered quite anomalous anatomically (Dos Santos and Miller 1992) and further phylogenetic data is still needed to confirm their placement among the three segregated genera.

Lapachol (naphthoquinone) was first described in Tabebuia avellanedae (= Handroanthus impetiginosus) in the XIX century and has antimicrobial properties and numerous applications in pharmacology (Hussain et al. 2007). Inclusion of lapachol in the vessels was evident in dense woods of the Tabebuia alliance by Dos Santos and Miller (1992) and us, such as in the genera Ekmanianthe, Godmania, Handroanthus and Zeyheria. Studies involving chemical extractions found lapachol in a number of other Bignoniaceae (Hussain et al. 2007), such as Fernandoa, Heterophragma, Kigelia, Newboldia, Phyllarthron, Radermachera, Stereospermum, Tecomella (Paleotropical clade), Cybistax, Paratecoma peroba (Tabebuia alliance), Catalpa (Catalpeae), Dolichandra unguis-cati and Dolichandra quadrivalvis (Bignonieae). Broad chemical extractions of members of the entire family are needed to investigate further the exact distribution of this feature within the Bignoniaceae and its possible taxonomic value.

Tribe Crescentieae, a monophyletic group nested within the *Tabebuia* alliance (Grose and Olmstead 2007a; Olmstead et al. 2009), is also distinct anatomically, especially due to the abundant aliform confluent parenchyma that forms large bands accounting for almost half of the cells in the wood.

The other seven genera scattered within the Tabebuia alliance clade (Olmstead et al. 2009) are much smaller [i.e., Cybistax (monotypic), Ekmanianthe (ditypic), Godmania (ditypic), Paratecoma (monotypic), Sparattosperma (monotypic), Spirotecoma (four species), and Zeyheria (ditypic)] and share with the rest of the Tabebuia alliance narrow to medium vessels, aliform paratracheal parenchyma, forming short to long confluences, storied or irregularly storied structure (likely an anatomical synapomorphy of the Tabebuia alliance; Pace and Angyalossy 2013), exclusively or mostly with homocellular rays and thin to thick-walled non-septate fibers. Ekmanianthe was described as having diffuse-in-aggregate axial parenchyma by Gasson and Dobbins (1991); however, neither our specimens nor the ones studied by Dos Santos and Miller (1992) had this feature.

The Paleotropical clade is composed of trees and a few shrubs of pinnately compound leaves (Olmstead et al. 2009), except for members of Coleeae, a tribe endemic to Madagascar, which includes shrubs with simple leaves (Zjhra et al. 2004; Olmstead et al. 2009). Members of this clade are anatomically similar to the *Tabebuia* alliance, except for the absence of storied structure and medium sized vessels.

Members of Coleeae, a monophyletic group nested within the Paleotropical clade are characterized by cauliflory, indehiscent fruits, and pinnately compound leaves (genus *Phylloctenium* with simple leaves and spines; Zjhra et al. 2004). Wood anatomy of Coleeae is unique, with apotracheal diffuse parenchyma and uniseriate rays. Within the tribe, two groups can be recognized by wood anatomy; the first formed by *Colea* and *Ophiocolea*, with thin-walled fibers and abundant apotracheal parenchyma, and the other by *Rhodocolea* and *Phyllarthron*, with very thick-walled fibers and scanty apotracheal parenchyma. The wood anatomical similarities of *Colea* and *Ophiocolea* support the sister group relationship suggested for both genera in the most recent phylogenies of the family (Zjhra et al. 2004; Olmstead et al. 2009).

Oroxyleae were treated initially within Bignonieae due to similarities in fruit dehiscence. Oroxyleae were subsequently set apart as a tribe due to the Asian distribution of its members (vs. Neotropical in Bignonieae), absence of tendrillate vines, and a stem without cambial variants (Gentry 1980). Oroxyleae have been shown to be a monophyletic group distinct from Bignonieae (Spangler and Olmstead 1999; Olmstead et al. 2009), supporting Gentry's proposal. Representatives of Oroxyleae have wood anatomical traits that set them apart, such as the presence of foraminate perforation plates, homocellular non-storied rays, and lack of cambial variants.

Catalpeae include two genera, Catalpa and Chilopsis, with Catalpa being divided into two sections, Catalpa section Catalpa and Catalpa section Macrocatalpa. Species of Catalpa are disjunctly distributed, with some species occurring in North America (along with Chilopsis) and others in east Asia (Li 2008). Catalpeae are rather homogeneous anatomically, except for the absence of semi-ring to ring porous wood and its paratracheal aliform parenchyma with short confluences in the tropical species (e.g., Catalpa longissima in section Macrocatalpa). All species have vessels of medium diameter (130-200 µm), common presence of tyloses, 3-seriate rays, heterocellular, septate fibers in tropical and subtropical species, and the presence of simple to semi-bordered vessel-ray pittings, a novel character typical of this clade (and potential synapomorphy) that has been previously overlooked.

Bignonieae are the most species-rich clade of Bignoniaceae, accounting for almost half of the species in the family (Lohmann 2006; Olmstead et al. 2009). Bignonieae are clearly monophyletic (Spangler and Olmstead 1999; Lohmann 2006; Olmstead et al. 2009) and unite all Neotropical lianas of the family and a few shrubs (Lohmann 2006). This clade shares a series of unique morpho-anatomical features, such as terminal leaflets modified into tendrils and the presence of a cambial variant (Schenck 1893; Dobbins 1971; Gentry 1980; Dos Santos 1995; Lohmann 2006; Pace et al. 2009; Lohmann and Taylor 2014). The wood of representatives of Bignonieae is similar to that of other lianas (Carlquist 1985, 2001) exhibiting vessel dimorphism, heterocellular rays, and cambial variants (Angyalossy et al., in press). The wood of Bignonieae differs from lianas of other families by the presence of a generally scanty paratracheal parenchyma, septate fibers, and no vasicentric-tracheids. Parenchyma is only more abundant in the Arrabidea and allies clade (sensu Lohmann 2006), comprising Cuspidaria, Fridericia, Lundia, Tanaecium, Tynanthus and Xylophragma. The only genus not assign to any clade in Lohmann (2006), Calliclamys latifolia (monotypic), shares this unusual abundance of parenchyma with members of the Arrabidea and allies clade and might be better placed within this clade, although additional phylogenetic studies are still needed in order to confirm its placement. Storied structure is present in some species, sometimes only in fibers, and sometimes in the axial and ray parenchyma. Silica was found exclusively in one species of Bignonieae, Pachyptera kerere, and is absent elsewhere in the family. Sampling of the other four species of the genus is needed to determine whether this is a feature exclusive of this species or a potential synapomorphy of the entire genus within the Bignoniaceae.

The shape and distribution of the cambial variants represent synapomorphies of major clades in the tribe (Lohmann 2006) and are of great importance for the wood development of its species in this clade (Lima et al. 2010). Most Bignonieae (12 out of 21 genera) have four phloem wedges. Other clades, however, have a different anatomical architecture. Perianthomega, for instance, is the only genus with four broad phloem arcs. Three other clades are different by developing multiples of four phloem wedges, namely: Lundia, some Adenocalymma and a speciose clade that reunites Amphilophium, Anemopaegma, Bignonia, Dolichandra, Mansoa, and Pyrostegia. All these genera develop multiple of four phloem wedges that progress in a predictive manner from four, eight, 16, 32, 64 and so on. Amphilophium and Dolichandra go through additional developmental changes that are further described below.

Amphilophium is characterized by phloem wedges that get included within the secondary xylem (Dos Santos 1995; Pace et al. 2009), an anatomical feature that is derived from the outgrowth of the cambium at the sides of the phloem wedges including these wedges within the xylem (Pace et al. 2009), similarly to what happens in Strychnos millepunctata (Loganiaceae; Veenendaal and Den Outer 1993; Angyalossy et al., in press). Amphilophium is a newly circumscribed genus (Lohmann and Taylor 2014) that unites all species from six previously recognized genera (Fischer et al. 2004): Amphilophium, Distictella, Distictis, Glaziovia, Haplolophium, and Pithecoctenium; most of these were included in the subtribe Pithecocteniinae of Melchior (1927). Mapping the included phloem wedges onto the phylogeny of Bignonieae reconstructs this type of cambial variant as ancestral in this tribe (Pace et al. 2009), suggesting it as a potential synapomorphy of the clade and providing further support for the circumscription of this genus.

Dolichandra is one of the genera with multiple of four phloem wedges which develop a novel type of cambial variant called "multiple-dissected" phloem wedges (Dos Santos 1995; Pace et al. 2009). In this genus, non-lignified axial and ray parenchyma is present and proliferates during development dissecting the secondary xylem (Pace et al. 2009). Dolichandra (sensu Lohmann and Taylor 2014) reunites four genera previously treated as separate: Dolichandra, Macfadyena, Melloa and Parabignonia (Fischer et al. 2004). Members of these genera share this unique type of cambial variant (Dos Santos 1995; Lohmann 2006; Pace et al. 2009), supporting the new circumscription of these genera adopted by Lohmann and Taylor (2014). The evolution of cambial variants in Bignonieae seems to have involved terminal additions towards complexity enhancement and heterochrony (Pace et al. 2009).

The present study illustrates the diversity of wood anatomy encountered in Bignoniaceae and identifies key diagnostic character that provide further support to the new circumscription of newly established genera (Grose and Olmstead 2007b; Lohmann and Taylor 2014), tribes and higher-level clades in the family (Olmstead et al. 2009; Table 3). The wood anatomical synapomorphies identified in this study are: (a) Jacarandeae have a unique wingedaliform parenchyma, (b) Catalpeae are the only tribe where all members have simple to semi-bordered vessel-ray pits, (c) Oroxyleae have foraminate perforations plates common, (d) the Tabebuia alliance has storied structure, (e) Coleeae have apotracheal diffuse parenchyma, (f) Bignonieae have a cambial variant called furrowed xylem whose types also support genera within the tribe, such as (g) Amphilophium, which has included phloem wedges, (h) Dolichandra, with multiple-dissected phloem wedges, (i) Perianthomega with four broad phloem arcs. These results represent a first step towards a better characterization of Bignoniaceae clades with anatomical characters. These findings highlight the importance of wood anatomical studies as important sources of morphological characters to diagnose major plant clades as a whole.

Acknowledgments The authors are indebted to Alex C. Wiedenhoeft, Mike Wiemann and Regis Miller from the Forest Products Laboratory for warmly hosting us and allowing the study of the entire MADw collection (Madison, Wisconsin); Maria José Miranda and Raphael Pigozzo from the Institute of Technological Research (IPT, BCTw, São Paulo) for slides of Sparattosperma, Handroanthus and Tabebuia; Alexandre Zuntini, Anselmo Nogueira, Diana Sampaio, Mariane Souza-Baena, Milton Groppo from the Universidade de São Paulo (Brazil), Márdel Lopes from the Universidade Federal de Vicosa (Brazil), and Luzmilla Arroyo and Daniel Villaboel of the Museo Noel Kempff Mercado (Bolivia) for collecting samples or for assistance in field collections, Harri Lorenzi for allowing us to collect samples at the Instituto Plantarum/Jardim Botânico Plantarum; Antonio Carlos Franco Barbosa sectioning Stereospermum; Julio C. Majcher for sectioning samples of Oroxyleae used in Scanning Electron Microscopy; Pieter Baas, Michelle Zjhra, Guillermo Angeles, and Giuliano Locosselli for invaluable suggestions in early versions of the manuscript; Gabriella Pace, Lizana Rezende and Carolina L. Bastos for valuable support, the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grants 481034/2007-2; 486971/2012-0), and the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, grant 2012/01099-8; 2013/10679-0) for financial support. RGO is supported by US National Science Foundation (DEB-0309065, DEB-1353761). LGL and VA by CNPg productivity 307781/2013-5 and 308441/2012-5, respectively.

Appendix

Taxa sampled, followed by collector vouchers, wood collections and/or herbaria accession (following index Xylariorum and index Herbariorum) and collection location. The MAD herbarium was incorporated into the WIS herbarium in 2002 but is kept there as a separate collection.

Adenocalymma bracteatum DC., Castanho 153, Lohmann 861 (SPFw, SPF), Rio Negro, Amazonas, Brazil.

Adenocalvmma comosum (Cham.) DC., Pace 53 (SPFw. SPF), Living collection Plantarum Institute, Nova Odessa, São Paulo, Brazil. Adenocalymma divaricatum Miers, Udulutsch 2808 (SPFw, HRCB), Lencóis, Bahia, Brazil. Adenocalymma flaviflorum (Miq.) L.G. Lohmann, Sousa-Baena 2 (SPFw, SPF), Vale do Rio Doce Forest Reserve, Espírito Santo, Brazil. Adenocalymma neoflavidum L.G. Lohmann, Zuntini 23 (SPFw, SPF), Vale do Rio Doce Forest Reserve, Espírito Santo, Brazil. Adenocalymma nodosum (Silva Manso) L.G. Lohmann, Pace 20 (SPFw, SPF), Uberlândia, Minas Gerais, Brazil. Adenocalymma peregrinum (Miers) L.G. Lohmann, Pace 26 (SPFw, SPF), Living collection Plantarum Institute, Nova Odessa, São Paulo, Brazil. Adenocalymma salmoneum J.C. Gomes, Lohmann 658 (SPFw, SPF), Vale do Rio Doce Forest Reserve, Espírito Santo, Brazil. Amphilophium crucigerum (L.) L.G. Lohmann, Pace 1, Pace 2, Pace 3, Pace 34 (SPFw, SPF), São Paulo, São Paulo, Brazil. Amphilophium elongatum (Vahl) L.G. Lohmann, Pace 45 (SPFw, SPF), Living collection Plantarum Institute, Nova Odessa, São Paulo, Brazil. Amphilophium magnoliifolium (Kunth) L.G. Lohmann, Lohmann 851 (SPFw, SPF), Rio Negro, Amazonas, Brazil; Dos Santos 272 (MADw, MAD, MO, MG), Porto de Moz, Pará, Brazil. Amphilophium paniculatum (L.) Kunth, Pace 46 (SPFw, SPF), Living collection Plantarum Institute, Nova Odessa, São Paulo, Brazil. Amphilophium pulverulentum (Sandwith) L.G.Lohmann, Dos Santos 279 (MADw, MAD, MO, MG), Senador Jose Porfirio (Sozel), Pará, Brazil. Amphitecna latifolia (Mill.) A.H.Gentry, Fairchild Tropical Garden x-3-369, Florida, USA. Amphitecna regalis (Linden) A.H.Gentry, Nee & Taylor 29900, Las Choapas, 5 km Nw of El Doce, Uxpanapa Region, Veracruz, Mexico. Anemopaegma chamberlaynii (Sims) Bureau & K. Schum., Zuntini 15 (SPF), Vale do Rio Doce Forest Reserve, Espírito Santo, Brazil. Bignonia campanulata Cham., Pace 39 (SPFw, SPF), Livings collection Plantarum Institute, Nova Odessa, São Paulo, Brazil. Bignonia capreolata L., Nogle s.n. (MADw), Norfolk County, Dismal swamp, Virginia, USA; Wilson 19 (MADw, F), Cow Creek, Texas, USA. Bignonia magnifica W. Bull, Pace 51 (SPFw, SPF), Livings collection Plantarum Institute, Nova Odessa, São Paulo, Brazil. Bignonia prieurei DC., Zuntini 13 (SPFw, SPF), Linhares, Espírito Santo, Brazil; Dos Santos 87 (MADw, MAD, MO, MG), Marabá, Pará, Brazil. Callichlamys latifolia (Rich.) K. Schum, Zuntini 175 (SPF), Vale do Rio Doce Forest Reserve, Espírito Santo, Brazil.; Pace 42 (SPFw), Livings collection Plantarum Institute, Nova Odessa, São Paulo, Brazil; Pace 63 (SPFw, SPF), Ducke Forest Reserve, Manaus, Amazonas, Brazil; Campsis radicans (L.) Seem., Hicock 841 (SJRw, Y), Connecticut, USA; Pond 448 (MADw, MAD), Camden County, Dismal Swamp, North Carolina, USA. Catalpa

bignonioides Walter. Erdman & DeVall s.n. (MADw. MAD, NY), Gainesville, Florida, USA. Catalpa longissima (Jacq.) Dum.Cours., Pimentel & Garcia 965 (SJRw, NCI), San Cristóbal, El Tablaso, Nigua riverside, Cordillera central, Dominican Republic; Collector unknown s.n. (USw2942, US), Hispaniola Island. Catalpa speciosa (Warder ex Barney) Warder ex Engelm., Collector unkown s.n. (SJRw, RBHw3217), location unknown: Collector unkown s.n. (SJRw, Uw17977), location unknown. Catophractes alexandri D.Don, Dechamps 1219 (MADw, Tw, MAD), Mocamedes, Angola. Chilopsis linearis (Cav.) Sweet, Pidgeon s.n. (SJRw, WIS), Otero County, New Mexico, USA; Johnson s.n. (MADw, BWCw), Campaign Wash, Arizona, USA; Collector unkown s.n. (Kw), location unknown. Colea gentryi M. L. Zhjra, Zhjra 714 (MADw, WIS), Masoala Peninsula, Madagascar, Africa. Colea resupinata M. L. Zhjra, Zhjra 785 (MADw, GAS holotype, TAN isotype, WIS), Vokoanina watershed, Masoala Peninsula, Antsiranana, Madagascar. Crescentia alata Kunth, Wiemann & Lemckert 23 (MADw, CR, LSU), Cañas, Guanacate, Costa Rica; Collector unkown s.n. (SJRw), Cuastecomate, Mexico; Ortega 12 (USw), Sinaloa, Mexico. Crescentia cujete L., Pace 80, São Paulo, São Paulo, Brazil; Dugand 149 (MADw, SJRw, MAD), Totuma, Colombia. Cuspidaria pulchra (Cham.) L.G.Lohmann, Pace 24 (SPFw, SPF), Uberlândia, Minas Gerais, Brazil. Cybistax antisyphilitica (Mart.) Mart., Reitz & Klein 7354 (MADw, HBRw, HBR), Salto do Pilão, Lontras, Santa Catarina, Brazil; Collector unknown s.n. (BWCw, SJRw42602), São Paulo, Brazil. Delostoma integrifolium D.Don, Acosta-Solis 6694 (MADw, SJRw, MAD, F), Limón, Bolivar, Ecuador; Acosta-Solis 11648-A (MADw, F), Ecuador. Deplanchea bancana (Scheff.) Steenis, Lai et al. 68559 (Kw, K), Sarawak, Malaysia; Forest Department of Java 2751 (SJRw, L), Menjabing, Dutch East Indies. Digomphia densicoma (Mart. ex DC.) Pilg., Nee 31168 (MADw, VEN, NY), Cerro de la neblina, Amazonas, Venezuela; Maguire 28311 (BWCw, USw), Mérida, Venezuela. Dolichandra unguiculata (Vell.) L.G. Lohmann, Zuntini 176 (SPFw, SPF), Vale do Rio Doce Forest Reserve, Espírito Santo, Brazil. Dolichandra unguis-cati (L.) L.G. Lohmann, Ceccantini 2687 (SPFw, SPF), Matozinhos, Minas Gerais, Brazil; Groppo 322 (SPF), São Paulo, São Paulo, Brazil. Dolichandra quadrivalvis (Jacq.) L.G.Lohmann, Gentry 58691 (MADw, MO), São Paulo, São Paulo, Brazil. Dolichandrone atrovirens (Roth) K.Schum., Brown s.n. (DDw, DD), Dehradun, India; Collector unkown s.n. (SJRw), Myanmar.; Kanehira 132 (SJRw), Palau, Micronesia. Ekmanianthe actinophylla (Griseb.) Urb., Fors 11 (MADw, SJRw, MAD), Havana, Cuba; Leon 14358 (SJRw, NY), Cuba. Fernandoa adenophylla (Wall. ex G.Don) Steenis, collector unknown s.n. (Kw 108, 427, 433, 435), location unknown. Fernandoa

magnifica Seem. Schlieben 459 (SJRw, MAD). Tanganyika, Tanzania. Fridericia chica (Bonpl.) L.G. Lohmann, Pace 50 (SPFw), Living collection Plantarum Institute, Nova Odessa, São Paulo, Brazil. Fridericia conjugata (Vell.) L.G. Lohmann, Pace 44 (SPFw), Living collection Plantarum Institute, Nova Odessa, São Paulo, Brazil. Fridericia platyphylla (Cham.) L.G. Lohmann, Pace 22, Pace 23 (SPFw, SPF). Uberlândia, Minas Gerais, Brazil. Fridericia samydoides (Cham.) L.G. Lohmann, Pace 49 (SPFw, SPF), Livings collection Plantarum Institute, Nova Odessa, São Paulo, Brazil. Fridericia speciosa Mart., Pace 40 (SPFw, SPF), Livings collection Plantarum Institute, Nova Odessa, São Paulo, Brazil. Godmania aesculifolia (Kunth) Standl., Breedlove 9563 (MADw, DS), Chiapas, Mexico; Williams 10233 (MADw, F), Aragua, Venezuela; Smith 3368 (SJRw, MAD), British Guiana. Handroanthus barbatus (E.Mey.) Mattos, Loureiro s.n (BCTw11727, INPA); Maguire 41572 (SJRw, NY), Rio Pacimoni-Yatua, Venezuela. Handroanthus chrysotrichus (Mart. ex DC.) Mattos, Pinho 6 (BCTw, SP), São Simão, São Paulo, Brazil; Pace 188, 190 (SPFw, SPF), São Paulo, São Paulo, Brazil. Handroantus impetiginosus (Mart. ex DC.) Mattos, Ducke 363 (SJRw, MAD), Brazil; Pinho 2 (BCTw, SP), São Simão, São Paulo, Brazil. Handroanthus serratifolius (Vahl) S.O.Grose, Lima s.n. (BCTw), Pará, Brazil; Silva 3281 (BCTw, INPA), Jari, Pará, Brazil. Heterophragma quadriloculare (Roxb.) K.Schum., Brown s.n. (SJRw, DDw1106), India; Dehra Dun s.n. (SJRw, DDw 241), India; Pearson s.n. (MADw), India. Heterophragma sulfureum Kurz, Conservator of Forests 1238 (SJRw), Burma. Jacaranda brasiliana Lam., Collector unknown s.n. (FPBw1755), Brazil; Collector unknown s.n. (SJRw, MAD), Brazil. Jacaranda copaia (Aubl.) D.Don, Cabrera 41, 42 (MADw, MAD), Puerto Carare, Santander, Colombia. Jacaranda obtusifolia Bonpl., Conservator of Forests 2049 (SJRw), British Guiana; Smith 3125 (SJRw, MAD), British Guiana. Jacaranda puberula Cham., Hoehne 28168 (SJRw, MAD), Brazil; Reitz 14198 (BWCw, MAD), Santa Catarina, Brazil. Jacaranda ulei Bureau & K.Schum., Dos Santos 167, 168 (MADw, MAD, MO, MG), Parauapebas, Pará, Brazil. Kigelia africana (Lam.) Benth., Schlieben 368 (SJRw, MAD), Tanganyika, Democratic Republic of Congo. Lundia damazii C. DC., Pace 55, Pace 56 (SPFw, SPF), São Paulo, São Paulo, Brazil. Lundia glazioviana Kraenzl., Zuntini 126 (SPFw, SPF), Vale do Rio Doce Forest Reserve, Espírito Santo, Brazil. Lundia longa (Vell.) DC., Zuntini 1 (SPF), Vale do Rio Doce Forest Reserve, Espírito Santo, Brazil; Pace 227 (SPFw, SPF), Biological Reserve of Poco das Antas, Rio de Janeiro, Brazil. Manaosella cordifolia (DC.) A.H. Gentry, Pace 41 (SPFw, SPF), Brazil, Livings collection Plantarum Institute, Nova Odessa, São Paulo, Brazil; Dos Santos 88 (MADw, MAD, MO, MG), Maraba,

Rio Doce S.A. Forest reserve, 48 km from Marabá, Pará, Brazil; Dos Santos 308 (MADw, MAD, MO, MG), Senador José Porfirio, Xingu riverside. Mansoa difficilis (Cham.) Bureau & K. Schum., Pace 35 (SPFw), São Paulo, São Paulo, Brazil; Zuntini 4 (SPF), Vale do Rio Doce Forest Reserve, Espírito Santo, Brazil. Mansoa onohualcoides A.H. Gentry, Zuntini 276 (SPF), Vale do Rio Doce Forest Reserve, Espírito Santo, Brazil. Mansoa standlevi (Steyerm.) A.H. Gentry, Pace 43 (SPFw), Living collection Plantarum Institute, Nova Odessa, São Paulo, Brazil. Markhamia lutea (Benth.) K.Schum., collector unknown s.n. (Kw525), Equatorial Guinea. Markhamia stipulata (Wall.) Seem., collector unknown s.n. (Kw440), Thailand. Martinella obovata (Kunth) Bureau & K. Schum., Zuntini 7 (SPF), Vale do Rio Doce Forest Reserve, Espírito Santo, Brazil; Dos Santos 237 (MADw, MAD, MO, MG), Porto de Moz, Xingu riverside, Pará, Brazil; Dos Santos 317 (MADw, MAD, MO, MG), Gurupa, Moju riverside, tributary of the Amazon river, Pará, Brazil. Millingtonia hortensis L.f., van Beusekom 3426 (TWTw, L), Saeat Kanchanaburi, Thailand; Brown 3160 (SJRw, DDw), India; collector unknown s.n. (Kw), Thailand. Neojobertia mirabilis (Sandwith) L.G. Lohmann, Dos Santos 48 (MADw, MAD, MO, MG), Buriticupu Forest Reserve, Maranhão, Brazil. Noeojobetia sp. nov., Zuntini 18, Vale do Rio Doce Forest Reserve, Espírito Santo, Brazil. Newbouldia laevis (P.Beauv.) Seem., Vigne 1722 (SJRw, MAD), Gold Coast, Nsuta, Ghana. Ophiocolea floribunda (Bojer ex Lindl.) H.Perrier Zhjra s.n. (MADw, MAD), Masoala Peninsula, Madagascar. Oroxvlum indicum (L.) Kurtz, China Academy of Foresty s.n. (TWTw7424, CAFw13841), China; Jacobs 8493 (TWTw, L), Lampung, Sumatra; Kanehira s.n. (TWTw, FUw B.401), Java, Indonesia; Brown 1179 (SJRw, DDw), India. Pachyptera kerere (Aubl.) Sandwith, Castanho 143, Lohmann 834 (SPF), Negro riverside, Amazonas, Brazil; Santos 226 (MADw, MAD, MO, MG), Melgaco, Marajó Island; Mapari riverside, Pará, Brazil; Dos Santos 274 (MADw, MAD, MO, MG), Porto de Moz; Xingu riverside near the Açai river, Pará, Brazil; Dos Santos 291 (MADw, MAD, MO, MG), Senador José Porfirio, Xingu river near foz do Igarapé Guará; Dos Santos 292 (MADw, MAD, MO, MG), Marabá, Rio Doce S.A. Forest reserve, Sororó riverside. Pajanelia longifolia (Willd.) K.Schum., Conservator of Forests 8188 (SJRw), Rangoon, Burma; collector unknown s.n. (Kw528), Malaya, Malaysia. Pandorea jasminoides (Lindl.) K.Schum., Pace 18, 19 (SPFw, SPF), Cultivated in Campinas, São Paulo, Brazil. Paratecoma peroba (Record) Kuhlm., Castro 284, 578 (BCTw), Rio Doce, Espírito Santo, Brazil. Parmentiera cereifera Seem., Curtis s.n. Fairchild Bot. Gard. X4- 183 (MADw), Florida, USA. Parmentiera macrophylla Standl., Cooper 402 (MADw, SJRw, MAD), Panama; Stork 1894 (SJRw,

MAD). Costa Rica. Perianthomega vellozoi Bureau. Pace 10, Pace 15 (SPFw, SPF), Mata do Paraíso, Viçosa, Minas Gerais, Brazil; Pace 28, Pace 29 (SPFw, SPF), Santa Cruz de la Sierra, Santa Cruz, Bolivia. Phyllarthron bojeranum DC., G 31 (SJRw, CTFw), Region Cotier Est, Madagascar. Pleonotoma melioides (S. Moore) A.H. Gentry, Dos Santos 174 (MADw, MAD, MO, MG), Parauapebas, Serra dos Carajas Biological Reserve: Dos Santos 298 (MADw. MAD, MO, MG), Senador José Pontifírio, Pará, Brazil. Pleonotoma stichadenia K. Schum., Zuntini 7 (SPF), Vale do Rio Doce Forest Reserve, Espírito Santo, Brazil; Dos Santos 187 (MADw, MAD, MO, MG), Parauapebas, Pará, Brazil. Pleonotoma tetraquetra (Cham.) Bureau, Ozório-Filho 11, São Paulo, São Paulo, Brazil. Podranea ricasoliana (Tanfani) Sprague, Pace 11 (SPF), São Paulo, São Paulo, Brazil. Pyrostegia venusta (Ker Gawl.) Miers, Pace 17 (SPFw, SPF), Campinas, São Paulo, Brazil; Pace 36 (SPFw, SPF), São Paulo, São Paulo, Brazil. Radermachera ignea (Kurz) Steenis, Conservation of Forests 2444 (SJRw), Burma. Radermachera gigantea (Blume) Miq., Van de Koppel 4780 (SJRw, L), Java, Indonesia. Radermachera glandulosa (Blume) Miq., Janssonius 1214 g (SJRw), Java, Indonesia; collector unknown s.n. (Kw), Burma. Radermachera pinnata (Blanco) Seem., Philippine Bureau of Forestry 342 (SJRw), Phillipines. Radermachera sinica (Hance) Hemsl., NTU 408, Taiwan. Rhodocolea multiflora Zhjra, Zhjra 836, Vokonina, Masoala Peninsula, Madagascar. Rhodocolea nycteriphilla Zhjra, Zhjra 810, Vokonina, Masoala Pensinsula, Madagascar. Rhodocolea telfairae (Bojer ex Hook.) H.Perrier, collector unknown s.n. (SJRw10766), Madagascar. Roseodendron donnell-smithii (Rose) Miranda, Williams 8734 (MADw, F), Fortuno, Coatzacoalcos River, Veracruz, Mexico; Williams 9382 (MADw, F), Ubero, Oaxaca, Mexico; William 9458 (MADw, F), Mexico; collector unknown s.n. (Kw920), Venezuela. Sparattosperma leucanthum (Vell.) K.Schum., collector unknown s.n. (BCTw 2486), Brasília, Distrito Federal, Brazil. Spathodea campanulata P.Beauv., Chevalier 140 (SJRw, K), Gabon; collector unknown s.n. (Kw529), Uganda. Spirotecoma spiralis (C.Wright ex Griseb.) Pichon, Bucher 90 (SJRw, MAD), Cuba. Stereospermum chelonoides (L.f.) DC., Istituto Botanico dell'Università di Firenze 706 (BCTw), India. Stizophyllum riparium (Kunth) Sandwith, Pace 16, Pace 33 (SPFw, SPF), São Paulo, São Paulo, Brazil; Zuntini 9 (SPF), Vale do Rio Doce Forest Reserve, Espírito Santo, Brazil. Tabebuia aurea (Silva Manso) Benth. & Hook.f. ex S.Moore, Gerolamo 3 (SPFw), São Paulo, São Paulo, Brazil. Tabebuia cassinoides (Lam.) DC., Williams 13809 (MADw, F), Puerto Ayacucho, Amazonas, Venezuela. Tabebuia fluviatilis (Aubl.) DC., Lobato 447 (MADw, MGw, MG), Barcarena, Pará, Brazil; Conservation of Forests 4071 (SJRw), British Guiana; collector unknown (SJRw12019), location unknown). Tabebuia heterophylla (DC.) Britton, Dungand 33754 (BCTw), Colombia. Tabebuia obtusifolia (Cham.) Bureau, Kuhlmann (BCTw, RB), Espírito Santo, Brazil. Tabebuia rigida Urb., Instituto de Tecnologia do Rio Grande do Sul s.n. (BCTw), Rio Grande do Sul, Brazil. Tabebuia roseoalba (Ridl.) Sandwith, CVRD Morais Jesus s.n. (BCTw), Linhares, Espírito Santo, Brazil. Tanaecium bilabiatum (Sprague) L.G. Lohmann, Lohmann 850 (SPF), Rio Negro Amazonas, Brazil. Tanaecium duckei (A.Samp.) A.H.Gentry, Dos Santos 179, 186, Serra do Carajás Biological Reserve, Companhia Vale do Rio Doce, Parauapebas, Pará, Brazil. Tanaecium pyramidatum (Rich.) L.G. Lohmann, Pace 14, Pace 35 (SPFw, SPF), São Paulo, São Paulo, Brazil; Dos Santos 101 (MADw, MAD, MO, MG), Marabá, Rio Doce S.A. forest reserve, Sororó riverside, Pará, Brazil. Tecoma cochabambensis (Herzog) Sandwith, Salomon 6684 (MADw, MO) Murillo, La Paz, Bolivia. Tecoma fulva (Cav.) G.Don, collector unknown s.n. (SJRw32082), location unknown. Tecoma stans (L.) Juss. ex Kunth, Jack 5693 (SJRw, MAD), Santa Clara, Belmonte, Cuba; Dugant 216 (SJRw, MAD), Colombia; Williams 12254 (MADw, F), Federal District, Venezuela. Pace 422, 423 (SPFw, SPF, MO), Magdalena Ocotlán, Oaxaca, Mexico. Tecomaria capensis (Thunb.) Spach, Rimbach 832 (SJRw, MAD), Ecuador. Tecomella undulata (Sm.) Seem., colletor unknown s.n. (Kw550), location unknown. Tynanthus cognatus (Cham.) Miers, Pace 9a, Pace 9b (SPFw, SPF), São Paulo, São Paulo, Brazil. Xylophragma myrianthum (Cham. ex Steud.) Sprague, Zuntini 263 (SPF), Vale do Rio Doce Forest Reserve, Espírito Santo, Brazil. Xylophragma pratense (Bureau & K.Schum.) Sprague, Dos Santos 140 (MADw, MAD, MO, MG), Marabá, Rio Doce S.A. forest reserve, Pará, Brazil. Zeyheria montana Mart., Pacheco 2762 (SJRw), Minas Gerais, Brazil; Heringen 4130 (BCTw, MADw), Rio de Janeiro, Brazil. Zeyheria tuberculosa (Vell.) Bureau ex Verl., Schmidt 143 (SJRw, M), Bolivia.

References

- Angyalossy V, Angeles G, Pace MR, Lima AC, Dias-Leme CL, Lohmann LG, Madero-Vega C (2012) An overview on the anatomy, development and evolution of the vascular system of lianas. Pl Ecol Divers 5:167–182
- Angyalossy V, Pace MR, Lima AC (in press) Liana anatomy: a broad perspective on structural evolution of the vascular system. In: Schnitzer SA, Bongers F, Burnham R, Putz FE (eds) Ecology of lianas. Wiley-Blackwell, Oxford
- APG (Angiosperm Phylogenetic Group) II (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Bot J Linn Soc 141:399–436
- APG (Angiosperm Phylogenetic Group) III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Bot J Linn Soc 161:105–121

- Barbosa ACF, Pace MR, Witovsk L, Angyalossy V (2010) A new method to obtain good anatomical slides of heterogeneous plant parts. IAWA J 31:373–383
- Bentham G, Hooker JD (1876) Genera plantarum 2, London, pp 1026–1053
- Berlyn GP, Miksche JP (1976) Botanical microtechnique and cytochemistry. Iowa State University Press, Ames
- Bukatsch F (1972) Bemerkungen zur Doppelfarbung Astrablau-Safranin. Mikrokosmos 61:255
- Carlquist S (1985) Observations on functional wood histology of vines and lianas: vessel dimorphism, tracheids, vasicentric tracheids, narrow vessels, and parenchyma. Aliso 11:139–157
- Carlquist S (2001) Comparative wood anatomy, 2nd edn. Springer, Berlin
- Chudnoff M (1984) Tropical timbers of the world. Forest Service Agriculture handbook number 607. United States Department of Agriculture, USA
- Dobbins DR (1971) Studies on the anomalous cambial activity in *Doxantha unguis-cati* (Bignoniaceae). II. A case of differential production of secondary tissues. Amer J Bot 58:697–705
- Dos Santos GMA (1995) Wood anatomy, chloroplast DNA, and flavonoids of the tribe Bignonieae (Bignoniaceae). PhD dissertation, University of Reading
- Dos Santos G, Miller RB (1992) Wood anatomy of Tecomeae. In: Gentry AH (ed) Bignoniaceae, Part II (Tribe Tecomeae)., Flora Neotropica Monograph 25(II)The New York Botanical Garden Press, New York, pp 336–358
- Dos Santos G, Miller RB (1997) Wood anatomy of *Jacaranda* (Bignoniaceae): systematic relationships in sections Monolobos and Dilobos as suggested by twig and stem wood rays. IAWA J 18:369–383
- Fischer E, Theisen I, Lohmann LG (2004) Bignoniaceae. In: Kubitzki K, Kadereit JW (eds) The Families and genera of vascular plants. VII. Flowering plants. Dicotyledons. Lamiales (except Acanthaceae including Avicenniaceae). Springer, Berlin, pp 9–38
- Gasson P, Dobbins DR (1991) Wood anatomy of the Bignoniaceae, with a comparison of trees and lianas. IAWA J 12:389–417
- Gentry AH (1980) Bignoniaceae: Part I (Crescentia and Tourrettieae). Flora Neot Mon, vol 25(I). NYBG Press, New York
- Gentry AH (1992) Bignoniaceae part II (tribe Tecomeae). Fl Neotrop Monogr, vol 25(II). NYBG Press, New York
- Grose SO, Olmstead RG (2007a) Evolution of a charismatic neotropical clade: molecular phylogeny of *Tabebuia* s.l., Crescentieae, and allied genera (Bignoniaceae). Syst Bot 32:650–659
- Grose SO, Olmstead RG (2007b) Taxonomic revisions in the polyplyletic genus *Tabebuia* s.l. (Bignoniaceae). Syst Bot 32:660–670
- Hussain H, Krohn K, Ahmad VU, Miana GA, Green IR (2007) Lapachol: an overview. Arkivoc II:145–171
- IAWA Committee (1989) IAWA list of microscopic features for hardwood identification. IAWA Bull 10:219–332

- Li J (2008) Phylogeny of *Catalpa* (Bignoniaceae) inferred from sequences of chloroplast *ndh*F and nuclear ribosomal DNA. J Syst Evol 46:341–348
- Lima AC, Pace MR, Angyalossy V (2010) Seasonality and growth rings in lianas of Bignoniaceae. Trees 24:1045–1060
- Lohmann LG (2004) Bignoniaceae. In: Smith N, Mori S, Henderson A, Stevenson D, Held S (eds) Flowering Plants of the Neotropics. Princeton University Press, NYBG, New York
- Lohmann LG (2006) Untangling the phylogeny of neotropical lianas (Bignonieae, Bignoniaceae). Amer J Bot 93:304–318
- Lohmann LG, Taylor CM (2014) A new generic classification of Bignonieae (Bignoniaceae) based on molecular phylogenetic data and morphological synapomorphies. Ann Missouri Bot Gard 99:348–489
- Lohmann LG, Ulloa CU (2006) Bignoniaceae. In: iPlants prototype checklist. http://www.iplants.org. Accessed 29 July 2012
- Melchior H (1927) Der natürliche Formenkreis der *Pithecocteniinae* innerhalb der Familie der Bignoniaceae. Repert Spec Nov Regni Veg Beih 46:71–82
- Olmstead RG (2013) Phylogeny and biogeography in Solanaceae, Verbenaceae and Bignoniaceae: a comparison of continental and intercontinental diversification patterns. Bot J Linn Soc 171:80–102
- Olmstead RG, Zjhra ML, Lohmann LG, Grose SO, Eckert AJ (2009) A molecular phylogeny and classification of Bignoniaceae. Amer J Bot 96:1731–1743
- Pace MR, Angyalossy V (2013) Wood anatomy and evolution: a case study in the Bignoniaceae. Int J Pl Sci 147:1014–1048
- Pace MR, Lohmann LG, Angyalossy V (2009) The rise and evolution of the cambial variant in Bignoniaea (Bignoniaceae). Evol Develop 11:465–479
- Rasband WS (2012) ImageJ. US National Institutes of Health, Bethesda, MD. http://imagej.nih.gov/ij
- Record SJ, Hess RW (1943) Timbers of the new world. Yale University Press, New Haven
- Refulio-Rodriguez NF, Olmstead RG (2014) Phylogeny of Lamiidae. Amer J Bot 101:287–299
- Schenck H (1893) Beiträge zur Biologie und Anatomie der Lianen im Besonderen der in Brasilien einheimischen Arten. In: Schimper AFW (ed) Beiträge zur Anatomie der Lianen. Botanische Mittheilungen aus den Tropen. Gustav Fisher, Jena
- Spangler RE, Olmstead RE (1999) Phylogenetic analysis of Bignoniaceae based on the cpDNA gene sequences *rbcL* and *ndh*F. Ann Missouri Bot Gard 86:33–46
- Veenendaal WLH, Den Outer RW (1993) Development of included phloem and organization of the phloem network in the stem of *Strychnos millepunctata* (Loganiaceae). IAWA J 14:253–265
- Zjhra ML, Sytsma KJ, Olmstead RG (2004) Delimitation of Malagasy tribe Coleeae and implications for fruit evolution in Bignoniaceae inferred from a chloroplast DNA phylogeny. Pl Syst Evol 245:55–67