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Abstract 

English has become one of the most important skills that people desire to acquire especially children 

under the globalization trend. Comparing to the English reading, writing and listening skills, speaking 

has been the most difficult part in the learning process as it requires assessment in communication and 

interaction which is not prevalent in the non-native culture environment. To solve the problem, previous 

researchers have proposed to utilize Computer-Assisted Language Learning (CALL) systems. With the 

significant breakthrough in automatic speech recognition, CALL systems have been widely used (such 

as the University Entrance Exam in China and the Test of English as a Foreign Language (TOEFL)). 

As mentioned above, there are massive young English learners in China. However, few studies 

have focused on the children speech assessment. Evaluation method especially for children speech has 

not been thoroughly studied. 

In this thesis work, we propose to develop a CALL system for young English learners. Firstly, we 

adopt the state-of-the-art subsampling Time Delay Neural Network (TDNN) and the Lattice Free 

Maximum Information Mutual Information to train the acoustic model, which leads to better phone 

recognition performance. Secondly, we propose a Salient Goodness of Pronunciation (SGOP) model 

based on the pronunciation characteristics of children and posteriorgram from the LF-MMI. The method 

changes the traditional form of the GOP and achieves a better evaluation. At last, we combine analysis 

from a word-level phonetic duration model and the SGOP into a Prosodic GOP (PGOP) model which 

achieves not only performance but also ability to offer prosodic suggestions on the CALL task. 

 

Key words: Computer-Assisted Language Learning (CALL), Time Delay Neural Network (TDNN), 

Lattice-Free Maximum Mutual Information (LF-MMI), Prosodic Goodness of Pronunciation (PGOP)  
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1.  Introduction 

 
Computer Assisted Language Learning (CALL) has received much attention from both the 

academic and industrial fields. This chapter firstly introduces the motivation of the CALL and then 

explains the outline of the whole thesis including problems and goals, contributions, and the thesis 

organization. 

 

1.1 Motivation 

 

At the age of globalization, there is a huge demand for people with different mother tongues to 

communicate with each other. Consequently, lots of people begin to learn a second language for 

convenience. Comparing to the reading, writing, and listening skills, speaking has been the most difficult 

part in the learning process as it requires assessment in communication and interaction which is not 

prevalent in the non-native culture environment. Based on the success of Automatic Speech Recognition 

(ASR), Computer Assisted Language Learning (CALL) has become a helpful choice for language 

learners. 

Comparing to traditional language learning processes, CALL has several advantages. 1). it can help 

to give specific suggestions for students. In traditional teaching within the classroom, due to the limited 

attention, the teacher cannot offer detailed advice to every student at most of the time. On the contrary, 

CALL systems have the potential to provide undivided focus to all the users according to the efficiency 

of computers. 2). judgment from CALL systems is more objective than humans. Under the same context, 

the CALL system can stay consistent and objective. Instead, the human’s judgment is often affected by 

emotion and other factors. 3). a CALL system can act as an extremely patient teacher without rest. 4). 

CALL systems allow more flexibility since they can handle different materials instead of several 

textbooks. 5). from the students’ aspect, CALL systems can protect their self-esteem avoiding 

embarrassment when making mistakes in the class. 

However, there are also limitations of CALL systems, including: 1). CALL systems normally 

predefine the types of feedback to users which are often not enough. For example, the previous CALL 

systems on GOP [1] only focused on the scoring method. It can be successfully applied in spoken 

language assessment, but it cannot provide useful suggestions for students on how to correct the mistakes. 

2). As a language is the tool for communication, some features of the language can only be detected in 

a social environment or interaction. For these situations, the CALL system cannot exert its best effect. 

3). a perfect teacher always can choose the best way to teach according to his students’ characteristics. 

However, current CALL systems have not taken into consideration the nature of students yet. 

Around the beginning of the CALL research, Chapelle proposed 7 principles for CALL [2] 

including both abundant linguistic input and acoustic output. Reconsidering the criteria, for now, current 
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CALL systems mainly focused on acoustic output, while the linguistic input is more likely to be 

implemented in automatic dialogue systems. The nature of CALL that focusing on acoustic output, 

shows a strong similarity between automatic speech recognition (ASR) and CALL. Therefore, given the 

state-of-the-art technology, several ASR algorithms can be successfully adopted in CALL fields. 

The ASR-based CALL system has been prevailing for recent years. Because of the equitable feature, 

CALL systems are widely employed in several Official Tests including Senior high school entrance 

examinations of several Chinese provinces (e.g. Beijing, Shanxi, etc.) and the TOEFL (Test of English 

as a Foreign Language). 

Though the CALL system has drawn great attention from academic and industrial fields, there are 

few studies on CALL systems for young English learners. It has been long acknowledged by educational 

researchers that young English learners have a stronger ability in acquiring new language [3]. And 

according to the requirements of compulsory education in China, Chinese students need to learn a foreign 

language (mainly English). Therefore, there is also a great need for constructing CALL systems for 

young English learners. 

 

Table 1-1 Chinese CALL Commercial Systems on English 

Products / 

Company 
Type Functions 

IFLYTEK Backend Accuracy, Fluency, Integrity, Intonation, Insertion / Deletion 

Yun Zhi Sheng Backend Classification in 4 Classes (True, False, Skip, Unknown) 

Tencent Cloud Backend 
Phoneme and Word Accuracy, Fluency, Stress Position, Integrity, 

Insertion / Deletion 

English 

Liulishuo 
Application Sentence-level Pronunciation, Tempo, Fluency, and Accuracy 

Shengtong Application Fluency, Sentence-level and Word-level Pronunciation Score 

Alpaca PTE Application Word-level Pronunciation, Fluency 

Renjiao Spoken 

Language 
Application Sentence-level Pronunciation 

Walk Across 

American 
Application Word-level Pronunciation 

English Reading Application Sentence-level Pronunciation 

Spoken 

Language 100 
Application Sentence-level Pronunciation 

Microsoft 

Wheatgrass 
Application Word-level Pronunciation, Fluency, Integrity 

 



 

3 

 

Table 1-1 above shows a summary of current commercial applications on CALL in China. From 

the table, it can be summed up that all the commercial applications basically achieve a scoring system 

on pronunciation. In addition to the pronunciation scoring, their functions vary on fluency, intonation, 

and integrity. The tests of these applications indicate that there are still several problems remain. Firstly, 

the system is weak in robustness. For example, in the English Reading shows in Table 1-1, if the user 

properly says only one of ten expected words, the sentence-level score is still high (around 70/100), 

indicating its weakness. Secondly, some of the applications can only offer an overview score on 

sentence-level which is not adequate for students to detect their errors in spoken language. In addition, 

few applications consider intonation or other prosodic features, which is a great perspective for the 

naturalness of language. At last, most of the applications are not designed for young English learners. 

Since speeches of young English learners are different from adults’ speech to a large extent, the accuracy 

of the systems falls when a child is using the system. 

 

1.2 Outline 

 

This section shows the outline for this thesis. We first introduce the general problems, tasks and 

research goal. Then we explain the contributions of the thesis work. Finally, we present the thesis 

organization in the rest of the manuscript. 

 

1.2.1 Problems and Goal 

 

As discussed in the previous section, CALL systems can help to efficiently and objectively detect 

the pronunciation problems which is costly to get from a personal human language tutor. Due to the 

rapid development in ASR and computer hardware, CALL systems begin to have more potential in 

evolution for the purpose of assisting teachers and self-study. There are three major challenges in the 

study of CALL. 1). The accuracy on pronunciation error detection. Considering the test discussed on 

current commercial CALL applications, the CALL systems still have problems in detecting the 

pronunciation errors accurately. 2). The multi-dimensional evaluation in CALL. According to the 

consensus on spoken language, the naturalness of a speech is derived from several perspectives, not only 

from the pronunciation. A natural way in speeches is a combination of appropriate stress, intonation 

(pitch rise or fall), and rhythm (duration) in phonemes [4]. For CALL with multi-dimensional evaluation, 

there are two stages. Firstly, CALL systems need to accurately detect the three factors. Then, there should 

be a scoring model which can determine or find out better prosody for the learners. 3). There are middle 

states for pronunciation judgment despite exact pronunciation errors. Unlike grammar and spelling errors 

that have clearly defined boundaries between true and false, the middle states cannot be easily classified 

as true or false. Hence, the pronunciation scoring should not be converted into a classification task and 

the score between true and false should be smooth. 
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Based on the problems discussed, our goal in this thesis work is to develop a CALL system that has 

following functions: 

➢ Accurately detect pronunciation errors. 

➢ High-grained score utterances, which can separate speaker between true and false 

pronunciation. 

➢ Highly support the CALL for young English learners 

➢ Simultaneously implement prosodic evaluation to non-native speakers. 

 

1.2.2 Contributions 

 

The main contributions of this thesis are three folds. 

1) the traditional Gaussian Mixture Model – Hidden Markov Model (GMM-HMM) acoustic model 

is replaced by the state-of-the-art Time Delay Neural Networks – Hidden Markov Model (TDNN-HMM) 

with discriminative training (Lattice Free – Maximum Mutual Information (LF-MMI)) for the CALL 

tasks for the first time to the best of our knowledge①. Unlike the Connectionist Temporal Classification 

(CTC) methods that cannot provide explicit posteriorgram on all the time span, the TDNN-HMM 

efficiently generates accurate posteriorgram for further Viterbi alignment which is necessary for CALL 

systems. 

2) the SGOP (Salient Goodness of Pronunciation) is proposed to adapt to the TDNN-HMM model 

for phonemes scoring in the CALL of young English learners. The method is also robust to the 

misalignment in the decoding process. 

3). a prosodic model for duration suggestion is proposed. The prosodic model can offer fluency 

suggestions for beginners with duration information. Based on it, the SGOP is further extended to the 

PGOP (Prosodic GOP) which significantly outperforms the GOP method. 

In addition to the main technical contributions, we collect a corpus of English speeches from young 

English learners with annotations of pronunciation scores (namely CALL_2K, either for CALL or ASR). 

All the English learners in the CALL_2K are in primary school or kindergarten with a mother tongue of 

Chinese. 

 

1.2.3 Thesis Organization 

 

Figure 1-1 shows the structure of the thesis. 

Chapter 2 discusses the background of the CALL system including an overview of the CALL 

system and literature review for the CALLs. The overview of the CALL includes well-accepted parts of 

a CALL system and how they relate to each other. This part is fundamental and necessary for the 

comprehension of basics of the thesis. The next section presents a literature review on previous CALL 

                                                        
① using the Chain structure trained with Lattice-Free Maximum Mutual Information (LF-MMI) criteria 
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works. The related works mainly focus on technical improvements instead of empirical studies on the 

application of CALL. The main parts of a CALL system are discussed in Chapter 3, 4, and 5 within a 

sequential order for speech processing. For a speech to be evaluated, it is firstly inputted into an acoustic 

model to detect phonematic features (Chap 3). Then the predicted probabilities are aligned to a standard 

template (Forced Alignment) based on a decoding model (Chap 4). With the decoded result, the phonetic 

scoring algorithm is performed (Chap 5). Apart from the pronunciation scoring process contained in 

Chap 3, 4, and 5, prosodic models are proposed based on the decoding model and it is further applied to 

improve the pronunciation scoring algorithm (Chap 6). Finally, the conclusions sum up the contributions 

and several possible directions in the future. 

 

Background

Chap 2

Acoustic Model

Chap 3

Decoding Model

Chap 4

Pronunciation Scoring Model

Chap 5

Prosodic Model

Chap 6

Summary

Chap 7  

Figure 1-1 Thesis Organization 

 

 

2.  Background 

 
In this chapter, we provide some background which consists of two parts. The first part discusses 

the overview of CALL systems including general system structure and annotation levels of CALL 

corpora and the second part presents related technical works for CALL systems. 
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2.1 CALL System: An Overview 

 

Computer-Assisted Language Learning (CALL) is a general category that applies computer 

technology to give suggestions on a language learning process for non-native learners (L2 speaker). The 

general CALL includes four basic aspects of language learning: reading, listening, speaking, and writing. 

It has a long history from 1960s. The first recorded CALL system can be traced back to 1959, called 

PLATO (Programmed Logic/Learning for Automated Teaching Operations). It is designed for Russian 

grammar tutoring [5]. The PLATO system mainly serves language learning in the writing section. The 

writing is not the toughest part in language learning. Among the four basic parts (reading, writing, 

listening and speaking) for L2 students, the speaking is the most difficult since it can be easily intervened 

by L2’s mother tongue and it is hard to find a suitable environment for practicing, especially for the L2 

speaker. However, due to the poor computing resources and a lack of speech processing knowledge, little 

focus has been put on speaking training until the 1990s. Computer-Aided/Assisted Pronunciation 

Training (CAPT) is a specific name for CALL on speaking training which is also the focus of this thesis①. 

Riding on the wave of Automatic Speech Recognition (ASR), CALL drew much attention in a way of 

combining with the ASR [1]. As for now, CALL is still following the same structure as the ASR. The 

basic structure of a CALL system is shown in Figure 2-1. 

 

Acoustic

Model

Decoding 

Model

Scoring

Model
Speech

 

Figure 2-1 Structure of a CALL system 

 

The general structure of a CALL system mainly consists of three components: an acoustic model, 

a decoding model, and a scoring model. 

Acoustic model converts speech information to phonetic feature (sometimes accompanied with 

prosodic features). Its target is to accurately recognize phonemes and outputs a posteriorgram that 

represents posterior probabilities for phonemes at each frame (For most cases in ASR and CALL, the 

posteriorgrams are hidden in the system based on the HCLG where “H” is for the Hidden Markov Model, 

“C” is for the Context-Dependent phonemes, and “L” is for the Language Model. The HCLG is a Finite 

State Transducer). The acoustic model should be dependent on speakers, so speaker adaptation methods 

are often applied at this stage. The main challenges in the acoustic model for the CALL are low 

discriminativeness in similar phonemes and over-adaptation. 

The decoding model aligns or recognizes features (i.e. posteriorgram) into phonetic segments. 

Inaccurate alignment and arbitrary speaking sentences are the main problems of the decoding model. 

                                                        
① CAPT and CALL are the same in the following parts 
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At last, a scoring model provides scores for phonetic sequences according to the segments. There 

are two types of scoring target. The first is a classification that dividing pronunciation into true or false. 

The second is to offer a continuous score that gradually changes. In addition, the same structure can be 

applied to prosodic evaluation as well. In most of the previous literature, the prosodic evaluation 

generally achieved within the scoring process. 

 

1. Raw Speech

2. Reference Text

3. Sentence Level Score

4. Phoneme Caption

(Duration or T/F)

5. Continuous 

Phoneme Score

 

Figure 2-2 Annotation Level of CALL Datasets 

 

The evaluation for each model varies and depends on the dataset’s annotation. Figure 2-2 shows 

the annotation levels of CALL datasets. For CALL problems, the raw speeches at the first level are 

difficult to evaluate. The second level datasets are with reference text. They can be applied to an ASR 

system or a CALL training process, but still not enough for CALL systems’ evaluation. From the third 

level, the corpus begins to be able to CALL system training and evaluation. As the level goes deeper, the 

evaluation and training processes become more accurate, but the time devoted in construction of datasets 

would be doubled. Therefore, researches on CALL always have to choose a balance between accurate 

method evaluation and efficiency in dataset preparing. 

 

2.2 Literature Review on CALL 

 

The literature review on CALL is organized as follows. 1) we define categories of pronunciation 

errors. 2) we review the Goodness of Pronunciation (GOP) algorithm, a baseline in the CALL. Based on 

the weakness of the GOP, methods for confusing phonemes and poor alignment are discussed 

respectively. 3) other algorithms for scoring were also discussed later. 4) we introduce words in the 

speaker adaptation, specific language characteristics, and pronunciation caption tasks. 
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In CALL systems, the computer acts as a teacher that offers an evaluation for L2 students’ 

pronunciation errors. According to previous researches [6], pronunciation errors can be categorized into 

phonetic errors and prosodic errors. A simple Venn diagram (Figure 2-3) identifies all related 

pronunciation errors under the two categories. 

 

Phonemes Errors Prosodic Errors

Phoneme 

Mis-pronunciation

Phoneme Deletion

Phoneme Insertion

Phone Subtitution

Comprehension 

Errors

Stress

Intonation

Duration

 

Figure 2-3 Pronunciation Errors 

 

The phonetic errors are related to individual phoneme. The difference between phonetic 

mispronunciation and other categories (i.e. deletion, insertion, and substitution) is that phonetic 

mispronunciation occurs when the pronunciation can be poorly recognized while other statuses cannot 

be identified. Stress, intonation, and duration can be sum up to prosodic errors (namely rhythm in some 

literature). These topics concentrate on pronunciation errors within a multi-dimensional perspective. 

There is also an inter-error which belongs to both sides of the errors, called comprehension errors. The 

comprehension errors are severe errors that affect comprehension of listeners, which make the sentence 

hard to comprehend even by a skilled native speaker. Mostly the error occurs when there are too many 

phonetic errors and prosodic errors. The difficulties for recognizing this kind of error are how to 

determine a threshold. Based on these error types, the literature on CALL can be divided into phonetic 

CALL and prosodic CALL. 

Studies on phonetic CALL were earlier than studies in prosodic CALL and they are more widely 

discussed in the CALL researches. Bernstein et al. [7] first proposed a pronunciation evaluation system 

based on ASR technology in 1990. He employed ASR to recognize L1 and L2 speeches, then compared 

the reference texts with the recognized tests for scoring. After correlation analysis with human raters, he 

proved the effectiveness of his system in providing feedbacks to language learners. The weakness of his 

study is that his corpus for CALL only contains limited sentences (6 sentences) which are not enough to 

draw to conclusions. After seven years, in 1997, Witt proposed a likelihood method for scoring [1], 
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namely Goodness of Pronunciation (GOP). Based on forced alignment with posteriorgram, the GOP was 

calculated as following Formula (2-1). 

 
𝐺𝑂𝑃(𝑝) = 𝑙𝑜𝑔(𝑃(𝑝|𝑂)) / 𝐿(𝑂) = 𝑙𝑜𝑔 (

𝑃(𝑂|𝑝)𝑃(𝑝)

∑ 𝑃(𝑂|𝑞)𝑃(𝑞)𝑞∈𝑄
)/ 𝐿(𝑂) (2-1) 

where O represents the acoustic segment of a phoneme, Q stands for phonetic dictionary, p represents 

the phoneme to be scored, and 𝐿(𝑂) represents the length of the segment. The GOP could compute 

scores for each phoneme for any given utterances and it was the first accepted algorithm in ASR-based 

CALL scoring methods. Because of its usefulness, the GOP scoring algorithm was often applied as a 

baseline model for CALL tasks. In the following paper [8], Witt further proposed an evaluation metric 

for human rater since human scoring is subjective. And in the same paper, she added adaptation methods 

in the acoustic modeling process and set individual thresholds for GOP scores for further 

mispronunciation classification. 

The GOP method could help to efficiently detect most of the mispronunciation errors, but it still 

had several disadvantages including the bad performance in confusing phonemes and poor alignment 

accuracy. 

For confusing phonemes, several methods were proposed. Tsubota applied ASR firstly to detect 

possible errors and then combined Linear Discriminant Analysis (LDA) with acoustic features to further 

verify the errors [9]. The result showed that the verification process could detect some dissimilarities in 

phonemes. Similarly, Yoon employed Support Vector Machine (SVM) to do the verification process [10]. 

Since the SVM with a non-linear kernel can handle non-linear transforms, which is more flexible than 

the LDA, the accuracy of the verification process was higher than the Tsubota’s. The similar phonemes 

can also be discriminated with a better acoustic model. In Stanley’s review on the CALL, he advocated 

further CALL researches to focus on the acoustic model with the discriminative training [11]. Several 

studies followed his suggestion. For example, Yan improved the acoustic model with Minimum Phone 

Error (MPE) and Minimum Word Error (MWE), and elevated CALL systems with more sensitivity of 

similar phonemes [12]. In addition to Yan’s work, Huang also proposed an F1-based discriminative 

training process for the CALL [13]. Because F1 is frequently regarded as an evaluation metric for 

mispronunciation problems, the result greatly outperformed the GOP. After the introduction of deep 

learning and its successful applications for ASR problem, Deep Neural Network (DNN) has been put 

forward for acoustic models and achieved great progress. It offered an improvement in CALL system as 

well. For examples, Nicolao et al. and Gao et al. applied DNN method and received considerable 

elevation of the CALL performance [14, 15]. Instead of focusing on discriminativeness in similar 

phonemes, some methods were proposed to improve CALL systems under a situation of imperfect 

acoustic models. A method proposed by Abdou [16] for the confusing phonemes was to generate a 

confidence level to detect problems which can be regarded as a compromise to the inaccurate evaluation. 

Weighted GOP (wGOP) is another method to improve CALL effectiveness under low discriminativeness 
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in similar phonemes [17]. It calculated all similar phonemes of an aligned segment and applied a linear 

combination of their likelihood ratio to generate wGOP for a certain phoneme. 

The alignment methods varied in previous researches. Some applied traditional ASR decoding 

method, while others performed fixed alignment due to the speech is highly related to the template①. 

Though the second alignment seems to be easier and it is the baseline in the CALL, there are still some 

obstacles (re-read, word deletion, and insertion) to the expected alignment. For problems in poor 

alignment, Chen employed an optional silence model to identify optional silences that occur between 

each phoneme [18]. Since alignment error cannot be ignored, there was a method that is robust to 

alignment error. After comparing different models for CALL scoring, Strik found an LDA-APF 

(Acoustic Phonetic Feature) model that was robust to alignment error [19]. Apart from template-based 

models that are specific for the CALL, some related works have been done in adapting traditional ASR 

decoding into a more CALL-friendly process. For example, Wang et al. mapped some L1 phonemes to 

L2 phonemes and aligned reference text with a multi-choice Viterbi alignment [20]. To avoid massive 

computation, pruning in decoding was proposed in the paper as well. Since some corpora in CALL 

provide phonetic duration information, the alignment can be refined under supervision. Based on the 

dataset annotation, Chen et al. proposed a Learning to Rank (LTR) function② and performed alignment 

on the LTR results for each frame [21]. 

In addition to GOP methods (also named as likelihood methods), other scoring methods can be 

classified into classifier-based scoring, Extend Recognition Network (ERN) scoring and unsupervised 

error discovery scoring [22]. Classifier-base scoring often based on feature extraction from force-aligned 

segments in L2 learners [23, 24]. Because of the limitation in task complexity and disability in offering 

instructions, the methods did not draw much attention. On the other hand, ERN based scoring and 

unsupervised error discovery scoring work on different ways to study the relationship between L1 and 

L2. Since mother tongue for L2 speakers has a significant impact on their accent and acoustic feature, 

the mispronunciation errors in their target learning language are more likely to generate from differences 

between the two languages. To solve the problem, some manual works showed their improvements. 

Zhou et al. processed a few lists of error trends for suggestions in CALL systems based on manual 

summary [25]. And Wang et al. increased the CALL performance with teaching experience [26]. 

However, the manual work is time consuming and cannot be easily extended to two random languages. 

The basic idea for ERN of CALL is to construct a decoding graph within a complexity between simple 

template derived from reference and full decoding graph in ASR, so it can also be regarded as an 

improvement in alignment [27, 28]. Unsupervised error discovery is to find out possible error pattern 

from L2 corpus. For example, Wang et al. applied clustering algorithms with an input of universal 

phoneme posteriorgram to detect error patterns automatically [29]. Lee et al. inferred errors from the 

                                                        
① In most of the CALL problem, the reference text is often pre-given. Therefore, the exactly content on the same speech is available for 

CALL. 
② A technique frequently applied in information retravel (IR) 
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similarity between spectrograms and found it robust without supports from any non-native datasets [30]. 

In addition to scoring algorithmic improvement, there were many related works on adaptation as 

well. In CALL, previous Maximum Likelihood Linear Regression (MLLR) or feature-space Maximum 

Likelihood Linear Regression (fMLLR) may hurt the accuracy in detecting mispronunciation problems. 

There are two reasons. Firstly, when training MLLR or fMLLR, it is assumed that native speaker corpus 

and non-native speaker corpus have the same feature space or model-level space, which is not easy to 

reach in a real situation [31]. Next, it was proved that MLLR adaptation on CALL problems had a side 

effect on scoring [32]. Some of the error pronunciation might be transformed into correct pronunciation 

after adaptation that is initially for speaker-level normalizing. The phenomenon named “over-

adaptation”. The naïve method to ease the problem is to build up two models [33, 34, 35]. One is for 

mother tongue of L2, the other is for the target language. The result is a combination of the output of the 

two models. Following similar insights, bilingual models were proposed as well [31]. Luo et al. got his 

inspiration from “over-adaptation” and proposed a regularized MLLR speaker adaptation with linear 

combination of the MLLR matrixes of teachers [36]. After splitting students’ MLLR matrixes into a 

linear combination of teachers who were assumed to have no pronunciation mistakes, the adverse effects 

of over-adaptation could be reduced. 

Apart from general pronunciation problems, researchers also paid much attention to specific 

language characteristics for better CALL system of a certain group. For example, Chinese has tone 

concept that is a further extension of basic phoneme recognition [37, 38, 39]. Specific points in Arabic 

and Dutch speeches were discussed in [40, 41] as well. 

For the caption, pronunciation caption is much harder than other tasks such as image classification 

and speech recognition. Therefore, some researches put their concentration into annotation efficiency. 

Some applied algorithms to discover hidden errors with limited annotation [42, 43], while others 

proposed a crowdsourcing way for massive caption [44]. 

 

3.  Acoustic Model 

 
The acoustic model is the beginning of the whole CALL system. Because the erroneous output 

would further pass down to the following decoding and scoring processes, the accuracy of the acoustic 

model should be as high as possible. In this thesis, we choose a state-of-the-art model (subsampling 

Time Delay Neural Network with Lattice-Free Maximum Mutual Information criterion) for phonemes 

modeling. In the experiment, we employ a large dataset with 1000-hour L1 dataset (Librispeech) for 

training. 

To prevent the model from learning mispronunciation errors, corpora from L2 speakers should not 

be included for the selection of training corpora. So, we add none of the L2 data in the training dataset 

for the acoustic model. With a large training dataset, we assume that the L2 speaker variation has been 

included in the training corpus. Another problem may occur is that the L1 corpus has no speeches from 
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young English learners. Comparing to speaker adaptation studies, speech analysis for young English 

learners has drawn relatively little attention. After surveyed 16 speech-related papers for young English 

learners [45 - 60], all their data on young English learners was obtained by self-collecting and none of 

them had posted a public-available dataset for young English learners. Therefore, we do not include 

speech dataset of young English learners in the training corpus. We propose further implements for this 

potential problem in the Chapter 5. 

This chapter discussed some current methods of constructing an acoustic model. The first section 

introduces traditional HMM-based acoustic model including feature processing process, estimation 

process and some other details in HMM for ASR. Section 2 focuses on the speaker adaptation for the 

acoustic model. Section 3 introduces time-delay Deep Neural Networks (TDNN) under the chain 

structure. And the last section discusses the experiment run on Librispeech corpus, an L1 speaker corpus. 

The last section summarizes the whole chapter. 

 

3.1 HMM-Based Acoustic Model 

 
Hidden Markov Model (HMM) [61] has long been regarded as a powerful statistical method to 

model sequential data in discrete time series. Not only can it efficiently integrate various data sequence 

to hidden patterns but can also reach a unified model accompany with the dynamic programming 

technique. The intuitive logic of HMM is close to speech’s nature by modeling a sequence with 

dependency relationships. The study on the HMM and acoustic models emerged at a very early age. The 

first HMM acoustic model was contructed in 1975 [62]. As for several decades, the method gradually 

becomes the most fundamental tools for training an acoustic model, which still shines for pre-training 

steps in state-of-the-art models. 

 

3.1.1 Feature Processing 

 

The original speech wave is very difficult to handle since it has only one dimension on the time 

domain. To convert the data into an easier version, the Fourier Transform is introduced. With Fourier 

Transform, waveform data can be converted into the frequency domain which has been found to be 

easier for further modeling. Since the speech can be easily comprehended by human beings, there are 

several methods motivated by behavior from the human acoustic system, such as Mel-Frequency 

Cepstrum Coefficients (MFCC) and Perceptual Linear Prediction (PLP) [63]. This section mainly 

discusses the MFCC. 

MFCC is the most widely-used features applied for speech processing because of its usefulness 

[64]. It is a developed version of traditional cepstrum. MFCC computation consists of the following 

steps: 1) the signal performs pre-emphasis on its high frequency to get the same Signal to Noise Ratio 

(SNR) for Fourier Transform. For some toolkits like Kaldi, the signal has also a process of dithering [65] 
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for feature robustness. 2) the signal is windowed at a duration of 10 to 30 milliseconds① with a smaller 

shift at half or less time of a window length each frame. For each frame, a window function is proposed 

for better Fourier Transform② . 3) each frame is converted into the frequency domain by Fourier 

Transform, namely “spectrogram”. The spectrogram is then fed into triangular filters following the Mel-

frequency scale. The Mel-frequency scale is designed to fit the sensitivity of humans’ hearing system. 4) 

the output from filter banks further takes a logarithmic form, because it has been found that human ear 

distinguishes absolute changes for low-frequency signals but logarithmic changes for high-frequency 

signals③. 5) a Discrete Cosine Transform (DCT) is performed to generate the final cepstrum feature 

(MFCC). Before feeding the features into models, MFCC always computes with cepstral mean and 

variance normalization (CMVN) [66]. The method performs a rudimentary step in reducing the acoustic 

difference between speakers and compensate for long-term spectral effects from recording tools (e.g. 

microphones). 

 

3.1.2 HMM Model 

 

In this subsection, the HMM model is introduced as well as its estimation process. 

The HMM model derives from the Markov Chain model. The Markov Chain model (for this 

research, the discrete Markov Chain is applied) is a series of random variables. All the finite random 

processes can be defined as follows [63]: 

Let 𝐗 =  𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛  as a sequence of n random variables chosen from a finite discrete set 

𝑂 = {𝑜1, 𝑜2, 𝑜3, … , 𝑜𝑚}. According to the Bayes rule, we have 

 

𝑃(𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛) = 𝑃(𝑋1) ∏ 𝑃(𝑋𝑖 | 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑖−1)

𝑛

𝑖=2

 (3-1) 

The Markov Chain model is in first-order with the Markov assumption that 

 𝑃(𝑋𝑖 | 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑖−1) =  𝑃(𝑋𝑖 | 𝑋𝑖−1) (3-2) 

Therefore, for the Markov Chain, Formula (3-1) can be rewrite as 

 

𝑃(𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛) = 𝑃(𝑋1) ∏ 𝑃(𝑋𝑖 | 𝑋𝑖−1)

𝑛

𝑖=2

 (3-3) 

As the Markov Chain is associated with time-invariant events, the random variable 𝑋𝑖  can be 

represented by finite state 𝑠𝑖. Therefore, for a Markov chain with n states, the parameters of it can be 

summarized as follows: 

 𝑎𝑖𝑗 = 𝑃(𝑠𝑖 = 𝑗 | 𝑠𝑖−1 = 𝑖)   1 ≤ 𝑖, 𝑗 ≤ 𝑛 (3-4) 

 𝜋𝑖 = 𝑃(𝑠1 = 𝑖)     1 ≤ 𝑖 ≤ 𝑛 (3-5) 

                                                        
① The reason for 10 to 30 milliseconds is that there is a consensus that speech waveform can be regarded as stationary. 
② Window function helps to smooth the edge of a window-size frame. Since Fourier Transform assume the input wave is recurrent, a 

mismatch in the edge will do harm to further feature extraction. Mostly the window functions are chosen from Hanning window or 

Hamming window. For Kaldi, there is a Povey window that forces two edges of the window to be zero. 
③ The threshold is found to be around 1 kHz. 
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where 𝑎𝑖𝑗 is the transition probability from state 𝑖 to state 𝑗. And 𝜋𝑖 is the initial probability for the 

start of the Markov chain. The sum of 𝑎𝑖𝑗 and the sum of 𝜋𝑖 are both 1. 

The Markov chain is powerful for building an observable sequence with limited memory cost, but 

the states in the Markov chain only correspond to deterministically observable output. Therefore, it 

cannot infer observable symbols from relevant features. To extend the modeling capacity, a non-

deterministic process for each state is proposed, which also known as the Hidden Markov Model (HMM). 

Because of the extension, an HMM has more parameter sets as follows. 

 𝑎𝑖𝑗 = 𝑃(𝑠𝑖 = 𝑗 | 𝑠𝑖−1 = 𝑖)   1 ≤ 𝑖, 𝑗 ≤ 𝑛 (3-6) 

 𝜋𝑖 = 𝑃(𝑠1 = 𝑖)     1 ≤ 𝑖 ≤ 𝑛 (3-7) 

 𝑏𝑖(𝑘) =  𝑃(𝑋𝑖 = 𝑜𝑘 | 𝑠𝑡 = 𝑖) (3-8) 

Where 𝑏𝑖(𝑘) is an output function that stands for the probability of emitting 𝑜𝑘 as in state i. The sum 

of 𝑏𝑖(𝑘) is 1 as well. The set of 𝑎𝑖𝑗 and 𝑏𝑖(𝑘) can be annotated as A and B. The model can be sum 

up to Φ(𝐀, 𝐁, 𝛑) with parameter sets of A, B, and 𝛑. A traditional method for the B matrix’s modeling 

is to apply Gaussian Mixture Model (GMM) trained with Expectation Maximization (EM) algorithm. 

Assume the Gaussian Mixture has M components. Then the 𝑏𝑖(𝑘) is given by 

 

𝑏𝑖(𝑘) = ∑  𝑤𝑖𝑘𝑏𝑖𝑘(𝑜𝑡)

𝑀

𝑘=1

 (3-9) 

And for each mixture component, the probability can be given by 

 
𝑏𝑖𝑘(𝑜𝑡) =

1

2𝜋
𝑛
2  |𝐶𝑖𝑘|

1
2

 𝑒−
1
2

(𝑜𝑡− 𝜇𝑖𝑘)𝑇𝐶𝑖𝑘
−1(𝑜𝑡− 𝜇𝑖𝑘)

 (3-10) 

where  𝜇𝑖𝑘 denotes the mean of the mixture (n is the size of the output symbol set). 𝑤𝑖𝑘 is the weight 

for each mixture. 𝐶𝑖𝑘 is a covariance matrix and it is set to be diagonal assuming the elements of feature 

elements are independent①. 

Given an HMM, the probabilities of an output string in 𝑶 within T speech frames following the 

state sequence 𝜃 = < 𝜃1, 𝜃2, … , 𝜃𝑇 > is 

 

𝑃(𝑶, 𝜃) =  𝜋𝜃1
∙ 𝑏𝜃1

(𝑜1)  ∙  ∏ 𝑎𝜃𝑡−1𝜃𝑡
∙ 𝑏𝜃𝑡

(𝑜𝑡)

𝑇

𝑡=2

 (3-11) 

The Viterbi Algorithm was always employed to decode the states [67]. It applies dynamic 

programming when scanning the HMM graph. For each timestamp, the Viterbi algorithm computes 

probabilities by choosing the optimum previous path. The probability of the Viterbi algorithm at time t 

is 

 𝑉𝑡(𝑖) =  𝑃(𝑋1
𝑡, 𝑆1

𝑡−1, 𝑠𝑡 = 𝑖 |Φ) (3-12) 

where 𝑋1
𝑡 is the observation till time t, the 𝑆1

𝑡−1 is the previous state sequence. For recursion part, the 

                                                        
① The main reason for the it is to reduce massive computation cost. 
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choosing criteria is 

 𝑉𝑡(𝑗) = Max
1≤𝑖≤𝑁

[𝑉𝑡−1(𝑖) ∙ 𝑎𝑖𝑗]𝑏𝑗(𝑋𝑡) (3-13) 

 𝐵𝑡(𝑗) = 𝐴𝑟𝑔𝑚𝑎𝑥
1≤𝑖≤𝑁

[𝑉𝑡−1(𝑖) ∙ 𝑎𝑖𝑗] (3-14) 

Baum-Welch Algorithm is for HMM parameters estimation based on EM [63]. The parameters are 

iteratively re-estimated, and the process is repeated until the change is accepted by a pre-defined 

threshold. Given a parameter set 𝜆 of {𝐀, 𝐁, 𝛑}, and 𝜙 as the likelihood function, the target function 

for Baum-Welch Algorithm can be written as 

 
𝑄(𝜆,  �̂�) =  ∑ 𝜙(𝜃 | 𝑶, 𝑨, 𝑩) log (𝜙(𝜃, 𝑶| �̂�, �̂�) )

𝜃

 (3-15) 

Since the output sequences are modeled with GMM, Formula (3-15) can be written as 

 

𝑄(𝜆,  �̂�) =  𝑐 −
1

2
 ∑ ∑ 𝛾𝑚(𝑡)(𝑐𝑚 + log (|Σ�̂�| + (𝑜𝑡 − 𝜇�̂�)𝑇Σ𝑚

−1̂(𝑜𝑡 − 𝜇�̂�))

𝑀

𝑚=1

𝑇

𝑡=1

 (3-16) 

where M is the number of Gaussian Mixture components. 𝑐𝑚 and 𝑐 are constants in respect to 𝜆. The 

𝛾𝑚(𝑡) denotes the probability of the state in mth mixture component at time t. 

 

3.1.3 HMM for Acoustic Modeling 

 

The HMM acts as a core in speech processing, but it cannot apply to the acoustic modeling directly. 

Before the HMM training process, several preparations need to be done (including the triphone model, 

decision trees for context clustering). In this section, we discuss specific factors for acoustic modeling 

with HMM. 

For acoustic modeling, the basic unit is a phoneme. Instead of words that are various, phonemes 

are accurate, trainable and generalizable for acoustic modeling [63]①. But a mono-phone model (consider 

each phoneme an individual unit) cannot model the context dependency problem given the Markov 

assumption. Consequently, the context dependency model was proposed with the triphone [68]. A 

triphone model considers neighboring phones as a unit other than a single phone. In addition, stress also 

affects the phonetic feature. Researches have a consensus that stressed phonemes tend to have higher 

pitches, longer duration and more energy comparing to unstressed ones [69]. Therefore, vowels are 

divided into stressed, unstressed, secondary stressed in the system as well. 

Though triphone has a significant effect on the acoustic model, the computation and memory costs 

are at exponential expenses. Another point is that triphone assumes that the triphone’s context is different 

from each other. However, there are similarities between the effect of neighboring phonemes. Therefore, 

Huang proposed clustering methods based on linguistic questions [70]. Through asking questions on 

linguistic features (such as nasal, sonorant or voiced), triphones are compressed into clusters with 

                                                        
① There are only less than 50 phonemes under different criteria, while the words are countless. 
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decision tree. The cluster from tri-phonetic events names senone [71]. A simple structure of HMM with 

senone is defined in Figure 3-1. There are two sub-HMM models. After clustering, the first two 

phonemes of both HMM are clustered to the same senone while the last two are different because of 

changes in context. By adjusting the decision tree for clustering, the number of senones can be modified 

to a specific range (around thousands) where allow us to balance the efficiency and accuracy. 

 

0 21

0 21

Senone1 Senone2

Senone3

Senone4

 

Figure 3-1 An HMM Structure with Senones 

 

After determining the topology for HMMs, the acoustic model is ready for acoustic recognition. 

The phoneme recognition process can be summarized as following: 

➢ Compute MFCC features for each frame. 

➢ Decode the HMM with MFCC (the MFCC series are observable symbols of the HMM). 

➢ Output the posteriorgram of phonemes’ sequence (HMM’s hidden states). 

 

3.2 Speaker Adaptation 

 
According to previous literature on CALL and speech processing for young English speakers, 

speaker adaptation techniques are always implemented as an important way. For CALL problem, the 

speaker adaptation has risks in over-adaptation as discussed in [31, 32, 33, 34, 35, 36], especially when 

training with non-native speech corpora. While for speech recognition of young English learners, 

speaker adaptation techniques are the main contribution to the recognition improvement such as MLLR, 

fMLLR, Vocal Tract Length Normalization (VTLN), and Maximum a Posteriori (MAP) [46, 51, 52, 53, 

55, 57, 58, 59]. This section introduces methods applied in the following experimental section. 

MLLR is a baseline adaptation model that introduced in [72] and developed in [73]. It re-estimates 
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GMM’s parameters with linear transformation given a speaker independent acoustic model. There are 

two forms of MLLR, known as unconstrained MLLR and constrained MLLR (cMLLR, also known as 

fMLLR). And both of their estimation processes apply the EM algorithm. Experiments had shown that 

there is not a superior method comparing MLLR and fMLLR [74]. However, for large speech corpora, 

fMLLR simplifies the training process and thus has a better runtime performance. 

When taking the speaker effect for speakers 𝑹 = < 𝑠1, … , 𝑠𝑅 > into the HMM training process, 

the 𝜇�̂� and Σ�̂�, are 

 
𝜇�̂� =

∑ ∑ 𝛾𝑟𝑚(𝑡)𝑜𝑟𝑡
𝑇𝑟
𝑡=1

𝑅
𝑟=1

∑ ∑ 𝛾𝑟𝑚(𝑡)𝑇𝑟
𝑡=1

𝑅
𝑟=1

 (3-17) 

 
Σ�̂� =  

∑ ∑ 𝛾𝑟𝑚(𝑡)(𝑜𝑟𝑡 −  𝜇�̂�)(𝑜𝑟𝑡 −  𝜇�̂�)𝑇𝑇𝑟
𝑡=1

𝑅
𝑟=1

∑ ∑ 𝛾𝑟𝑚(𝑡)𝑇𝑟
𝑡=1

𝑅
𝑟=1

 (3-18) 

where 𝛾𝑟𝑚(𝑡) denotes the speaker 𝑟’s probability of the state at time 𝑡 for GMM mixture 𝑚. 

For MLLR, 𝜇�̂� and Σ�̂� are adapted as Formula (3-19) and Formula (3-20): 

 �̂� = 𝑾𝜇 + 𝒃 (3-19) 

 �̂� =  𝑩𝛴𝑩𝑇 (3-20) 

For fMLLR, 𝜇�̂�  and Σ�̂�  are changed as Formula (3-21) and Formula (3-22) where the 

transformation matrix is constrained as the same 𝑨: 

 �̂� = 𝑨𝜇 + 𝒃 (3-21) 

 �̂� =  𝑨𝛴𝑨𝑇 (3-22) 

As Formula (3-21) and Formula (3-22) are substituted into Formula (3-16), yielding: 

 

𝑄(𝜆,  �̂�) =  𝑐 −
1

2
 ∑ ∑ 𝛾𝑚(𝑡)(𝑐𝑚 + log (|Σ�̂�| + (𝑜�̂� − 𝜇�̂�)𝑇Σ𝑚

−1̂(𝑜�̂� − 𝜇�̂�))

𝑀

𝑚=1

𝑇

𝑡=1

 (3-23) 

 𝑜�̂� = 𝑨−𝟏𝑜𝑡 + 𝑨−1𝒃 (3-24) 

Formula (3-23) indicates that fMLLR only conducts feature space transform and leaves the model 

parameters still. A detailed mathematical proves can be found in [73]. 

Speaker Adaptive Training (SAT) can adapt to speaker variations based on the fMLLR. It focuses 

on speaker-dependent transforms. Another advantage of fMLLR is its efficiency in Speaker Adaptation 

Training (SAT). Comparing to MLLR, fMLLR can be fitted into SAT procedures with minimum changes 

[73]. 

The fMLLR is effective for the GMM models, but it is not useable to the DNN structure. In the 

GMM, means and variances have statistical meanings and can be transformed together within the model. 

Unlike the GMM’s parameters, the weight factors in DNN have no well-formed structure for the linear 

transformation. Therefore, when discussing the DNN methods, traditional fMLLR cannot work. There 

are researches that studied similar strategies as fMLLR in a DNN structure [76], but it is trained under 

Cross Entropy criterion other than Maximum Likelihood. Another substitute method is to apply fMLLR 

that estimates with GMM-HMMs to get speaker adapted features. However, it has to be admitted that 

fMLLR are trained assuming with the GMM-HMMs other than DNN-HMM. The adapted fMLLR 

features are not sure to be suitable for the DNN. To put forward a “DNN-like” speaker adaptation method, 
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Saon et al. proposed an I-vector method that extracts speaker information through EM processes [77]. I-

vector method is a popular technique for studies in speaker recognition or verification, which aims to 

find a linear dependence from Universal Background Model (UBM)① to speaker dependent distribution. 

The estimated I-vectors are cascaded after basic MFCC features in the DNN input feature. 

 

3.3 Time Delay Neural Networks 

 
Neural networks have proved to be a powerful tool for several speech tasks. This section firstly 

discusses how Deep Neural Networks are implemented in acoustic modeling. Then, the base of Time 

Delay Neural Networks is introduced. At last of the section, the Chain Structure is discussed, which 

applies Lattice-Free Maximum Mutual Information (LF-MMI) discriminative training. 

A basic framework of DNN-HMM work is shown in Figure 3-2. Based on the senones and the 

deep structure, it can substitute the GMM part in the traditional architecture which brings much 

improvement with a minimum-modified decoding process [78]. 

Time Delay Neural Networks (TDNN) is a context-dependent neural network for speech processing 

and phoneme recognition [79]. It is regarded as a pioneer of Convolutional Neural Networks (CNN). 

The basic structure of the TDNN is shown in Figure 3-3. 

 

Observe Feature

0 21

Layer 1

Layer 2

Layer N-1

...

Layer N

 

Figure 3-2 A DNN-HMM Structure 

 

                                                        
① The UBM is a GMM trained with speaker independent audio wave. Therefore, it can be considered as speaker independent and a 

useful verification tool to verify whether the feature is speaker dependent. 
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Figure 3-3 A Traditional TDNN Structure 

 

Figure 3-3 shows the input layer of the TDNN. Circles represent filters before the network and the 

orange blocks stand for the input feature frames. The filters of the TDNN only accept input from partial 

three features and they share the same weights for all parameters. The outputs from filters can then be 

fed into hidden layers to hybrid the TDNN with DNN-HMM model [80]. The TDNN has desirable 

properties that it can accommodate to the temporal context between successive acoustic events and it is 

time invariant. The traditional TDNN excels in the ASR performance comparing to other neural 

networks until the prevailing of deep Recurrent Neural Networks (RNN) [81]. The RNN (mostly 

Bidirectional Long Short-Term Memory, BiLSTM) applies a Connectionist Temporal Classification 

(CTC) loss to form an end-to-end training without alignment [81, 82, 83]. The framework is promising 

with Large Vocabulary Continuous Speech Recognition (LVCSR) that contains thousands of hours. 

However, the training process is very slow for its disability in parallelization. To solve the problem, 

Peddinti et al. proposed a new TDNN framework with subsampling [84]. For the traditional TDNN, 

considering a context window of 5, each feature will be scanned fifth except for the start and the end. 

Based on the assumption that neighboring activations are continuous, the subsampling TDNN accepted 

gaps between each frame as shown in Figure 3-4. During the recognition process, the subsampled TDNN 

also applies asymmetric input contexts in high layers with more stress on the left following empirical 

tests. Subsampling significantly reduces runtime to 5 times less compared to the traditional TDNN and 

returns the model with a much smaller size. And the model remains superior to DNN models and even 

unfolded RNN models. 

 

 

Figure 3-4 A TDNN Structure with Subsampling 

 

In addition to the problem in training speed, the CTC methods were found to be unsuccessful with 

hundreds of hours dataset, while the discriminative training methods for DNN-HMM are superior [85]. 

As for the DNN-HMM system above, Cross Entropy (CE) loss function is often employed to minimize 

the phonemes prediction error rate. The CE criterion evaluates each speech frame independently. Hence, 

the training process ignores the context information among phonemes series. To address the error, 
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discriminative training methods for DNN were proposed. The discriminative criteria for DNN include 

Maximum Mutual Information (MMI), Minimum Phone Error (MPE), boosted MMI (BMMI) and 

Minimum Bayesian Risk (MBR). According to the report from [86], the introduction of the criteria can 

offer an improvement of 1.5% to 2% comparing to DNN with CE loss. Traditional discriminative 

training processes require lattices generated from a preliminary model such as GMM-HMMs and DNN-

HMMs with CE loss [87]. The lattices are used to provide a simple approximation for possible phoneme 

sequences (or word sequences) which can limit the computation cost to a controllable range. A typical 

MMI loss can be computed as follows. 

The 𝒐𝑚 = < 𝒐1
𝑚, 𝒐2

𝒎, … , 𝒐𝑇𝑚

𝑚 > is defined as the observed sequence of the mth speech where 𝑇𝑚 

is the frame number, and the 𝒘𝑚 = < 𝒘1
𝑚, 𝒘2

𝒎, … , 𝒘𝑁𝑚

𝑚 >  is defined as words’ caption of the mth 

speech where 𝑁𝑚  is the number of words. For the whole training set that has 𝑀  speech samples 

(denoted as 𝐒), the MMI is 

 

ℒ𝑀𝑀𝐼(𝜃; 𝑺)  =  ∑ ℒ𝑀𝑀𝐼(𝜃; 𝒐𝑚, 𝒘𝑚)

𝑀

𝑚=1

 

=  ∑ 𝑙𝑜𝑔𝑃(𝒘𝑚 | 𝜃;  𝒐𝑚)

𝑀

𝑚=1

 

= ∑ 𝑙𝑜𝑔(
𝑝(𝒐𝑚|𝒔𝑚;  𝜃)𝜅𝑃(𝒘𝑚)

∑ 𝑝(𝒐𝑚|𝒔𝑚;  𝜃)𝜅𝑃(𝒘)𝒘
)

𝑀

𝑚=1

 

 

 

 

 

 

(3-25) 

where 𝜃  is the parameter set for the model (i.e. DNN) and 𝒔𝑚  is for states in the HMM. 𝜅  is a 

hyperparameter as the acoustic scaling factor. 

According to chain rules, the derivative of ℒ𝑀𝑀𝐼(𝜃; 𝑺) is as Formula (3-26): 

 

∇𝜃ℒ𝑀𝑀𝐼(𝜃; 𝑺)  =  ∑ ∑ ∇𝑧𝑚𝑡
ℒ𝑀𝑀𝐼(𝜃; 𝑺)

𝑇

𝑡=1

𝑀

𝑚=1

∙
𝜕𝑧𝑚𝑡

𝜕𝜃
 

=  ∑ ∑ (κ (
𝛼𝑡

𝑛𝑢𝑚(𝒓)𝛽𝑡
𝑛𝑢𝑚(𝒓)

∑ 𝛼𝑡
𝑛𝑢𝑚(𝒓)𝑁

𝑟
−

𝛼𝑡
𝑑𝑒(𝒓)𝛽𝑡

𝑑𝑒(𝒓)

∑ 𝛼𝑡
𝑑𝑒(𝒓)𝑁

𝑟

))

𝑇

𝑡=1

𝑀

𝑚=1

∙
𝜕𝑧𝑚𝑡

𝜕𝜃
 

 

 

(3-26) 

where 𝑧𝑚𝑡  is the input of the final Softmax layer. The computation of 
𝜕𝑧𝑚𝑡

𝜕𝜃
  is the same as CE. 𝒓 

represents the state sequence. 
𝛼𝑡

𝑛𝑢𝑚(𝒓)𝛽𝑡
𝑛𝑢𝑚(𝒓)

∑ 𝛼𝑡
𝑛𝑢𝑚(𝒓)𝑁

𝑟
  denotes the posterior probability vector for 𝒓① . It is 

computed via a forward-backward algorithm (like the Baum-Welch algorithm discussed above) on the 

numerator lattice graph and the denominator lattice graph. The traditional MMI discriminate training 

must apply the lattice, otherwise, the computation cost is huge. However, the lattice also introduces some 

losses in accuracy and it is still time-consuming. The framework is shown in Figure 3-5. 

 

                                                        
① The Formula 26 is simplified for interpretation. A full version can be found in [87]. 
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Figure 3-5 The MMI Training Process 

 

The Lattice-Free MMI (LF-MMI) was proposed in [85] to solve the problem①. It applies a phone-

level n-gram language model for denominator graph with a more efficient minimization algorithm under 

non-deterministic Finite State Acceptor (FSA). The simplification of the denominator graph enables the 

forward-backward algorithm in the whole graph rather than confined graph from the lattice. The 

alignment is still necessary in order to form the numerator graph. And the numerator graph is also split 

to chunks with time constraints and subsampling. Since the sequence-level training has a problem of 

overfitting [88], three regularization techniques are also proposed including a multi-task on CE, an L2 

regularization and Leaky HMMs (stop and restart a new HMM when encountering certain probability 

on each frame). In addition, in the Chain model, the model unit was bi-phone instead of triphone, which 

can further faster the training process with an even better recognition result. The L2 regularization for 

hidden layers is further extended to the TDNN-F (factorized forms for tradition TDNNs). The extension 

solved the stability problems which frequently occurred in traditional Singular Value Decomposition 

(SVD) based fine-tuning techniques for neural network training [89]. 

The Chain model is a combination of subsampling TDNN-F and LF-MMI with an integrated frame 

size (from 10ms to 30ms) and an unconventional HMM topologies that changes the fixed 3-state 

structure to a single state. The chain model is implemented in Kaldi [65]. 

 

3.4 Experiments on Librispeech 

 

This section introduces experiments done on Librispeech with the Chain structure model discussed 

above. The acoustic model is further applied to form the relating part within the CALL system. 

                                                        
① The methods only avoid the usage of denominator lattice and the alignment (numerator lattice) is still needed. 
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Librispeech is a corpus of English Reading speeches [90]. It contains almost 1000 hours (960 hours 

for training and 40 hours for testing) of reading speeches at a sampling rate of 16 kHz and it is also 

gender balanced at both the speaker level and the utterance level. Among public-available datasets, 

Librispeech is the largest dataset at the best of our knowledge. In addition, the corpus is based on 

audiobook which is the same task (the speaking task) for the CALL system. The corpus has 7 partitions 

as listed in Table 3-1. 

 

Table 3-1 Corpus Partitions in Librispeech 

Partitions Hours 
Minutes per 

speaker 

Female 

Speakers 

Male-

speaker 

Total 

Speakers 

train-clean-100 100.6 25 125 126 251 

train-clean-360 363.6 25 439 482 921 

train-other-500 496.7 30 564 602 1166 

test-clean 5.4 8 20 20 40 

test-other 5.1 10 17 16 33 

dev-clean 5.4 8 20 20 40 

dev-other 5.3 10 16 17 33 

 

Most of the speech corpus has no phoneme-level caption, neither does the Librispeech dataset. 

Therefore, we evaluated the acoustic training process with the Word Error Rate (WER) from the ASR 

task. and pre-built Language Models (LM) from Librispeech is applied for LM rescoring. As discussed 

above, a GMM-HMM model should be first trained. The corpus is gradually added into the training pool. 

In the step of feature extraction, the MFCC is computed with a conventional parameter set (25 

milliseconds frame length, 10 milliseconds frameshift, 13 cepstral bins, 23 Mel bins, 0.97 pre-emphasis 

coefficient, sample frequency at 16,000, with energy usage and adaptation through Vocal Track Length 

Normalization (VTLN)). 

To commence for the training process, a mono-phone system is trained with the 2,000 shortest 

utterances from the train-clean-100 partition for easier alignment. Combined with a small trigram LM, 

the mono-phone model reaches a WER of 43%. Next, a triphone GMM-HMM is trained with 5,000 

utterances’ delta and delta-delta MFCC. The state number for the HMM is limited to 2,000 and each 

state will have a GMM with 5 components. Similar to this kind of process, the GMM-HMM is further 

trained by gradually adding more data and employing speaker adaptation methods such as fMLLR and 

SAT. 

The final TDNN trained on LF-MMI applies the recipe of release version in Kaldi [65]. The input 

of the neural network is a combination of 100-dimension i-vector and the 40-dimension MFCC. It has 

17 hidden TDNN-F layers besides an LDA affine layer next to the input and a linear layer next to the 
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output. There are three separate layers in a TDNN-F layer: a linear layer for factorization (160 

dimensions), a central layer (which is a traditional TDNN layer with 1536 dimensions) and a scaling 

layer [89]. The time strip unit for subsampling is from 1 to 3 which relates to TDNN layers from the up 

to the bottom. Multi-task Learning is implemented with two losses, the LF-MMI loss, and the CE loss. 

The L2 regularization coefficient is 0.008 for most layers except for the last layer’s 0.002. There are four 

epochs set in the training process. The test result of several experiments is reported in Table 3-2. 

 

Table 3-2 WER of Experiments on Librispeech 

 Test Clean Set Test Other Set 

Mono-Phone (2k) 43.43% 73.94% 

Triphone (5k) 16.13% 48.91% 

Triphone (10k + LDA + MLLT) 13.20% 44.70% 

Triphone (10k + LDA + MLLT + SAT) 10.89% 35.11% 

Triphone (100h + LDA + MLLT + SAT) 9.01% 30.28% 

Triphone (460h + fMLLR + SAT) 8.11% 27.20% 

Triphone (960h + fMLLR + SAT) 7.77% 21.90% 

Kaldi -Reported (TDNN + LF-LMM) [65] 4.17% 10.62% 

TDNN + LF-MMI 3.81% 8.80% 

 

As shown from the results in Table 3-2, the TDNN structure with LF-MMI has greatly improved 

the traditional GMM-HMM structure with speaker adaptation. Not only performs the method perfect on 

the clean dataset, but it also proves to be robust in various environments. There is an improvement 

observed from the Kaldi-Reported training result with TDNN + LF-LMM. After checking the source 

codes, it is found that the Kaldi-Reported Result only applied TDNN structure instead of TDNN-F. The 

improvement, therefore, is because of the introduction of TDNN-F. 

 

3.5 Summary 

 
In this chapter, we chronological review the current techniques in the acoustic modeling, from the 

basic GMM-HMM model to the TDNN-HMM model with LF-MMI. 

As the base for all the acoustic model, the first section introduces the traditional GMM-HMM model 

and how its working mechanism in acoustic modeling. 

The next section drills into speaker adaptation which plays an important role in children speech 

processing. 

The third section introduces the state-of-the-art TDNN method. Instead of the traditional one, the 

TDNN is subsampling for efficiency and wider context. In addition, the training process applies LF-
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MMI training criteria with more accuracy improvement. 

To test the result, we further conduct experiments on Librispeech. The experiment shows that the 

method not only significantly excels in the clean dataset, but also keeps the robustness in speeches with 

noise. For the excellence of the TDNN-HMM structure, it is applied as the base acoustic model in the 

following chapters. 

 

4.  Decoding Model 

 
This section introduces the decoding model that decodes phonemes’ posteriorgrams into phoneme 

sequences (it can be word sequences as well). Most of the speech corpora are without phoneme caption 

and the phoneme caption is unrealistic in CALL applications. The alignment is necessary for specific 

phonetic evaluation. Therefore, a CALL system must have a strong decoding model. 

For the beginning, we introduce a subsection of forced alignment in which comparing the 

differences between CALL and ASR and providing a specific alignment technique for CALL. In the next 

part, we evaluate the alignment with the TIMIT dataset. The TIMIT has a phone-level annotation which 

can be applied for alignment evaluation. To evaluate the model, we employ the acoustic model trained 

on Librispeech (discussed in the prior section). The last section summarizes the whole chapter. 

 

4.1 Forced Alignment 

 

The Forced Alignment is to align a series of data to another sequential data, which is frequently 

applied in speech processing and analysis. The technique is essential to building up the training set for 

several tasks including Text-to-Speech (TTS) and multimedia web searching [91, 92]. Unlike the ASR’s 

decoding process, the Forced Alignment is based on determined transcripts. 

This section is divided into two subsections. Though the CALL is very similar to the ASR, there 

are still several differences according to previous discussions, especially for the decoding process. 

Therefore, a detailed comparison between the CALL and the ASR is discussed in the first subsection. 

The second subsection introduces the method applied in the CALL system for the thesis. 

 

4.1.1 CALL and ASR 

 

The CALL and the ASR has a very close relationship in their structure with a slightly different 

purpose. The purpose of the CALL is discussed before, which is to teach non-native speakers with 

pronunciation error detection and evaluation. While the ASR’s purpose is to recognize speech (mostly 

focus on the robustness, such as the far-field ASR and the ASR in noisy environments). In a word, the 

CALL is a discriminator while the ASR is a recognizer. The following part firstly revisits the similarities 

of the two systems and then heads into the differences. 
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Basically, the acoustic models for phonetic modeling are the same in the CALL and the ASR. Both 

need to perform phonetic modeling to identify phonetic information from the raw audio wave. Because 

the studies on CALL is relatively fewer than the ASR’s, the acoustic model of the CALL benefits much 

from the abundant studies on the ASR. Though the CALL concentrates more on phonetic classification 

other than sequential recognition, there remains a limitation of the speech datasets. Comparing to a large 

amount of data with references, the phone-level caption corpora are in shortage (it is difficult to caption 

these corpora since the caption needs to be conducted with professional knowledge). Therefore, direct 

phoneme classification cannot be trained with a large corpus. A compromising way① from the ASR is 

to link the data with word-level references and to EM the phonetic alignment with gradually training 

processes. Consequently, the CALL always adopts the same acoustic training structure as the ASR. 

The mismatch purposes in the CALL and the ASR result in three other differences. 

For starters, the attitude of two systems towards non-native speeches varies especially for the 

training process of the acoustic model. The CALL attempts to distinguish non-native speeches from the 

native ones. But the ASR accommodates to all speeches regardless of the non-natives and the natives. 

Its aim is to successfully recognize correct sentences even if there are some mistakes. Therefore, the 

acoustic training set for the CALL is often with pure native speakers②. 

For decoding, an ASR system mainly works on searching the best sequence that best fits the speech 

signals while the CALL works on an alignment that aligns speech signals to the reference text. The 

searching process in the ASR is not alone with acoustic models (HMM-based models)③ but with LM. 

The LM is added to offer word-level penalties such as extra insertion or deletion. Due to the complexity 

of searching processes for a large lexicon, clever pruning methods are often adopted such as beam search, 

bi-directional search, and some heuristic searching techniques. The alignment for CALL is much simple. 

Since the reference is available, the target can be a phonetic sequence. What need to consider is the 

phone-level insertion or deletion (optional silence is important for the CALL as well). Because the graph 

size is much smaller than the ASR’s, the pruning strictness can be also looser than the ASR’s which can 

receive improvement on accuracy. 

The CALL has another scoring part where the ASR does not need. 

Though the above discussions reveal some differences in most of the CALL and the ASR systems. 

they are the same in some real-world applications [24]. In [24], the evaluation was performed on 

comparing the differences between the ASR outputs and the references. This system is preliminary for 

its coarse-grained evaluation on word-level. 

 

 

                                                        
① The only way up until now. 
② Sometimes, a small portion of non-native speakers is added as well. 
③ As discussed before, the CTC-based RNN methods are not considered in phonetic alignment of the CALL. Therefore, only the HMM-

based acoustic model is considered. 
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4.1.2 Alignment for CALL 

 

This section introduces the basics of forced alignment and its implements on the CALL. As 

introduced in the previous section, forced alignment for speech aims to align a series of phonemes with 

a raw audio wave. 

An initial method is Dynamic Time Warping (DTW) [93]. The DTW is first proposed as a speech 

recognizing model for continuous or isolated human word recognition. It uses a dynamic programming 

method to align the time series of features (e.g. MFCC) and a specific word template in order to minimize 

the distance across the whole alignment. A sample for the word “helpful” is shown in Figure 4-1. The 

integer in each colorful block stands for the frame size aligned to target templates. 

 

3 1 1 2 3 2 2 2 3

Silence HH EH1 L P F AH0 L Silence

 

Figure 4-1 An Alignment Sample for the Word “Helpful” 

 

The warping process is as follows: 

𝑆 = < 𝑠1, 𝑠2, 𝑠3, . . . , 𝑠𝑛 > is denoted as the feature series on time and 𝑇 = < 𝑡1, 𝑡2, 𝑡3, . . . , 𝑡𝑛 > is 

denoted as the desired templates. As arranged the 𝑆 and the 𝑇 to a Cartesian coordinate system, the 

grid point (𝑖, 𝑗) represents an alignment on 𝑠𝑖 and 𝑡𝑗. The warping path 𝑃 = < 𝑝1, 𝑝2, 𝑝3, . . . , 𝑝𝑛 > 

is a sequence of grid points under the algorithmic restrictions. An example of the DTW is shown in 

Figure 4-2. In the example, 𝑠1  corresponds to 𝑡1  while 𝑠2  is still aligned to 𝑡1 . As shown in the 

figure, the problem can be solved through a dynamic programming problem. 
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Figure 4-2 The DTW Grid Example 
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To perform the dynamic programming, there are three main problems to work out including the 

distance function and the recurrent function. 

The distance function is computed for the feature time series. Several distance measures are 

possible for the function, the most frequent method applied is the square of the difference. If the function 

is denoted as 𝛿, the objective function is to minimize the total difference as shown in Formula (4-1). 

 

𝐷𝑇𝑊(𝑆, 𝑇)  =  𝑚𝑖𝑛( ∑ 𝛿(𝑝𝑘)

𝐾

𝑘 = 1

) (4-1) 

The recurrent function is the core of the dynamic programming. A typical recurrent function is 

defined in Formula (4-2). 

 𝑐(𝑖, 𝑗)  = 𝛿(𝑖, 𝑗)  +   𝑚𝑖𝑛[𝑐(𝑖 − 1, 𝑗), 𝑐(𝑖 − 1, 𝑗 − 1), 𝑐(𝑖, 𝑗 − 1)] (4-2) 

where 𝑐(𝑖, 𝑗)  represents a cumulative distance that sums up the previous optimum distances. The 

Formula (4-2) is a symmetric mode for dynamic programming that equally treats the feature sequence 

and the template sequence. An asymmetric formulation applies 𝑐(𝑖 − 1, 𝑗)  or 𝑐(𝑖, 𝑗 − 1)  instead of 

both. For the ASR on words, the asymmetric formulation performs better [94]. 

The distance function and the recurrent function determines two major restrictions for the DTW. 

Firstly, the path sequence of grid points must follow a monotonical order which means that 𝑖𝑘−1 ≤  𝑖𝑘 

and 𝑗𝑘−1 ≤  𝑗𝑘   Next, each step cannot skip frame on both the feature sequence and the template 

sequence, which means that 𝑖𝑘  −  𝑖𝑘−1 ≤  1 and 𝑗𝑘  − 𝑗𝑘−1 ≤  1. 

The DTW for CALL decoding is easy. Firstly, the posteriorgram of the CALL is computed and it is 

the feature sequence. Then, the speech sentences are extended into phoneme sequences. The alignment 

is performed with the two sequences. Mostly, an asymmetric formulation is implemented. A difference 

from the original DTW is the changes of the distance function and the target function. For the grid point 

(𝑖, 𝑗), the (𝑡𝑗)𝑡ℎ post probability of the 𝑠𝑖 feature is the distance. And the objective function becomes 

 

𝐷𝑇𝑊(𝑆, 𝑇)  =  𝑚𝑎𝑥( ∑ 𝛿(𝑝𝑘)

𝐾

𝑘 = 1

) (4-3) 

 

For a CALL decoding problem, the DTW has several shortcomings. The most essential one among 

them is that the DTW cannot model optional silence. It is natural to have optional silence between words 

or in the words (there is often a silence before plosive phonemes). However, the DTW cannot efficiently 

skip chosen phonemes. To solve the problem, an optional silence implementation based on the Viterbi 

algorithm [95] is applied. Before applying the Viterbi algorithm, a decoding graph is needed. Taking the 

“helpful” example again. If there is an optional silence occurred between the “L” phoneme and the “P” 

phonemes, the graph can be regarded as following Figure 4-3. 
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Silence HH

EH1 L P F

AH0 L

Silence

Silence

 

Figure 4-3 The Decoding Graph for “Helpful” 

 

To represents the optional silence in “helpful, a silence unit is added between the “L” and the “P”. 

In addition, an epsilon arc is added as well for the direct skip. Based on the features of posteriorgram, 

the Viterbi algorithm is suitable for alignments. 

The graph construction can be more complicated with respect to more alignment requirements. For 

example, it can model the differences of the English accent and the American accent and choose the best 

route to distinguish the accents. Besides, the graph can also enlarge for word repetition (the situation is 

common for young English learners), word insertion and word deletion. 

The graph method can solve several problems in optional phonetic problems, but there remain some 

disadvantages for the method. Firstly, the graph may be a huge cyclic graph which violates the restriction 

of monotonical processing. The violations extremely slow down the programming process. In addition, 

word level deletion and insertion may encounter errors when there are similar phoneme patterns in a 

sentence template. An example is shown in Figure 4-4. There are two words: “data” and “dates”. They 

have the same three phoneme subsequence (“D”, “EY1”, “T”) and different phonemes at the last (“AH0” 

and “T”). Because of the similarity, it will be confusing for the system whether the “dates” is repeatedly 

spoken or the whole “data dates” are spoken. Therefore, we only consider optional silence between 

words using the graph model and the Viterbi algorithm. 

 

D EY1 T AH0 D EY1 TS

DATA DATES

 

Figure 4-4 An Error Example for the Graph-based Decoding 
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4.2 Alignment Evaluation on TIMIT 

 

The TIMIT (Texas Instruments and Massachusetts Institute of Technology) dataset is a pioneer 

phone-level database for speech analysis [96]. Up till now, the TIMIT is relatively small comparing to 

various corpora with thousands of hours on LVCSR. However, due to its fine-grained transcription, the 

TIMIT still receives much attention in the academic and industrial fields. There are 6300 sentences 

recorded at 20kHz (then down sampled to 16kHz) from 630 speakers (10 sentences for each) in the 

TIMIT database. 439 speakers (approximately 70%) are male while the others are female. 

The outstanding transcription was obtained by three steps. Firstly, a phonetician recognized the 

acoustic-phonetic sequences by the means of repeating listening and visual examination. Next, the 

phonemes were aligned to the speech wave with a dynamic programming method (the method is like the 

DTW). The automatic alignment has three steps as well. It first classified a 5ms frame window into five 

categories (obstruent, sonorant, voice-sonorant, nasal and silence). Then sequences of these categories 

were aligned to the given phonetic sequence combining a search strategy and some phonetic rules. Some 

phonetic contextual knowledge is applied for further segmentation. For the last step of the transcription, 

each phonetic boundary was verified and refined by more experienced phoneticians. 

Our alignment evaluation applies the whole set of the TIMIT (6300 sentences). On a 30ms frame 

size, the posteriorgram is computed by the acoustic model trained with LF-MMI and TDNN-F. Due to 

the different annotations for the Librispeech (that we adopted) and the TIMIT, several preprocessing 

works should be done before conducting the experiment.  

Firstly, because the TIMIT phone-level caption is on a unit of 0.0625 (
1

16
) ms, a 30ms frame size is 

equal to 480 units of the caption in the TIMIT. After integration, both the forced alignment results and 

the TIMIT captions are transformed into two sequences. The first sequence is for the phoneme sequence 

while the next sequence has the same length where denotes the duration of the corresponding phonemes. 

Next, the Librispeech adopts the ArpaBet phonetic transcription while the TIMIT has its own 

transcription standard. Therefore, a dictionary is applied for mapping①. Additionally, the Librispeech 

system considers phonetic stress which means that each vowel has four states for its stress status. They 

are also integrated for the comparison. In addition, all the silence frames are cleaned out. There are two 

reasons for the split. For the first reason is that the forced alignment model only considers the optional 

silence between words, but the TIMIT caption has optional silences in the words as well. Cleaning out 

the silence phonemes makes it possible for comparison under the same restrictions. For the second reason, 

the speech length is fixed. If there are more silence frames detected, there must be some deletion in other 

phonemes’ duration. Consequently, the align error is counted twice. 

                                                        
① The mapping is not explicit since the phonemes are not ono-to-one correspondent to each other. 
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After the preprocessing, the TIMIT caption still cannot directly compare to the forced alignment 

because there are phonetic insertion and deletion occurred in the TIMIT caption. A rudimental method 

is to only compute phonemes from the head and the tail where the phonemes are corresponding to each 

other. Another method is to apply the DTW technique to align the two sequence. The distance function 

for (𝑖, 𝑗) can be whether the 𝑖𝑡ℎ phonemes in the forced alignment is the same as the 𝑗𝑡ℎ phoneme in 

the TIMIT caption. The extra phonemes for two sequences are discarded. 

Two evaluation metrics are employed to evaluate the model. One is the direct error (mean absolute 

error, MAE), the other is correlation index (Pearson index). The result is shown in Table 4-1. Two 

models are in comparison. The Fixed Silence model is the forced alignment model with a fixed silence 

between words. The Optional Silence model has an optional silence during the alignment. 

 

Table 4-1 Test Results on TIMIT 

 MAE Pearson 

Fixed Silence 1.188 0.400 

Optional Silence 1.220 0.411 

 

Table 4-1 shows that forced alignment based on the acoustic model performs well on an average 

variation of 36ms (1.2 × 30ms) . Considering the human reaction time is about 300ms as reported in 

[97], the alignment works well enough for further usage. The Pearson index also indicates that there is 

a linear relationship between the alignment and the TIMIT. However, the two models on silence have no 

general preferences for the forced-alignment. Since MAE is more focused, the fixed silence model is 

applied as the default decoder. 

 

4.3 Summary 

 
This section generally focuses on the decoding process. The decoding process is a part that connects 

the preceding with the following. And it is the most different parts between the CALL and the ASR. 

Therefore, in the beginning of the first section, it compares the CALL and the ASR with their 

similarities and distinctions. The distinctions mainly come from the mismatch in purpose. Led by the 

mismatch, the thesis further reviews three major differences. The next part starts from the traditional 

DTW algorithm and its further extension of the Viterbi decoding. 

The experiments on the decoding process is performed on the TIMIT, a phone-level captioned 

speech dataset. The decoding result shows that the alignment only mismatch on an average of 36ms 

which is far less than the human reaction time of 300ms. The result confirms its usability for further 

sections.  
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5.  Pronunciation Scoring Model 

 
This chapter introduces the pronunciation scoring model. Unlike the acoustic model and the 

decoding model that the CALL has several similarities with the ASR system, the scoring model is the 

unique part implemented in the CALL. 

As discussed in the background introduction, this chapter looks back into the GOP methods in the 

first section. Next section proposed some implements for the basic GOP method including rescaling 

methods for young English Learners. The methods change the basic GOP to better accommodate young 

English learns. The methods can not only accommodate the error alignments but also provide a more 

convincing score based on a given acoustic model. Section 3 first introduces a self-collected dataset and 

then evaluates the scoring method on the dataset. The last section summarizes the whole chapter. 

 

5.1 Goodness of Pronunciation (GOP) 

 

For all the pronunciation scoring methods, the fundamental target is to compute high scores for 

correct phonemes and low scores for mispronounced phonemes. The GOP is considered as the 

dominating method up until now. 

Before the GOP was proposed, there are two methods frequently applied to the word verification 

task (a similar task to the CALL①). The first is based on “a-posteriori” likelihood and the second is 

modeled with binary classifiers. The “a-posteriori” likelihood method contains two steps [98, 99]. The 

first step was to spot keywords that may be incorrect by checking the “a-posteriori” probability. For the 

next step, a classifier was proposed to double check the correct/incorrect labeling. Instead of maximizing 

the likelihood, the binary classifiers aimed to minimize the prediction errors. The classifiers could be 

various in which neural networks were always involved [100, 101, 102]. Both methods worked well in 

word verification. However, they both concentrate on word-level assessment and cannot perform 

phonetic assessment since they only consider if the word occurs as expected. 

The GOP is an “a-posteriori” like methods that measure the phone-level pronunciation scoring. It 

assumes that the reference text of the utterance spoken by a language learner is given. A typical scenario 

is a reading task that asks a language learner to read a given text. Recall the Formula (2-1), since the 

sum of the denominator is approximately the same as the maximum, the Formula (2-1) can be 

reinterpreted into following Formula (5-1). 

 
𝐺𝑂𝑃(𝑝) = 𝑙𝑜𝑔(𝑃(𝑝|𝑂)) = |𝑙𝑜𝑔 (

𝑃(𝑂|𝑝)𝑃(𝑝)

𝑀𝑎𝑥𝑞∈𝑄𝑃(𝑂|𝑞)
)| / 𝐿(𝑂) (5-1) 

The boundary of the segment 𝑂  is computed through the Viterbi alignments. Under an HMM 

                                                        
① Similar but not the same. The CALL process focuses on the assessment while the word verification task measures whether a given 

word hypothesis corresponds to its actual occurrence. 



 

32 

 

structure, the numerator can be generated with a forced alignment to the reference text while the 

denominator is computed with an unconstrained phoneme loop. Since the maximum of the 𝑃(𝑂|𝑞) may 

not be all the same for the whole segment 𝑂, the score of the denominator often applies the sum of the 

log likelihood per frame through the whole segment. For a DNN-HMM system, the process becomes 

simple. Both the numerator and the denominator on the frame level can be directly generated from the 

last Softmax layer. 

The GOP score cannot be applied for scoring directly since the range of it varies on each phoneme. 

Therefore, the GOP is always interpreted as binary classes to determine whether the phoneme is accepted 

or rejected. Since the HMM fits differently on each phone (the vowels tend to be stable while fricatives 

are more variable), phone-dependent thresholds are employed. With respect to the GOP’s basic statistics, 

the threshold for 𝑝 can be defined as Formula (5-2): 

 𝑇𝑝  =  𝜇𝑝 + 𝛼𝜎𝑝 + 𝛽 (5-2) 

where 𝜇𝑝 and 𝜎𝑝 are the mean and the standard deviation of the GOP score of the phoneme 𝑝. In 

practice, the parameter 𝛼  and 𝛽  are determined empirically to yield a similar scale for the global 

threshold (with fluctuation for specific phonemes). 

 

5.2 Rescaling Methods for Young English Learners 

 

This section firstly reviews some related works on the CALL for young English learners. Then, a 

Salient GOP (SGOP) is proposed for implementation. 

At best of our knowledge, the first work on the CALL for young English learners was done by 

Hacker et al. in 2005 [103]. The method was in hope to evaluate the children speeches on three levels 

(word-level, utterance-level, and the speaker-level). The 14-dimension features (defined manually and 

reduced with Principle Component Analysis, PCA) were applied to train an LDA classifier based on 

human ratings. The feature dimension was then extended to more and was adjusted specifically for the 

three levels in his Ph.D. thesis [104]. The method was validated by an L2 children speech datasets of his 

laboratory. However, his method can only offer an evaluation to a general level (i.e. words, sentences, 

and speakers) instead of error position (i.e. phone-level) and the scoring solution is still universal for 

adults and children. In the following part, a Salient GOP method is proposed to solve the weakness above. 

The Salient GOP (denoted as SGOP) is shown in Formula (5-3). 

 
𝑠𝐺𝑂𝑃(𝑝|𝑂) = 𝑀𝑎𝑥

𝑜∈(
1
4

𝐿(𝑂),
3
4

𝐿(𝑂))

|
𝑙𝑜𝑔(𝑀𝑎𝑥𝑞∈𝑄𝑃(𝑜|𝑞))

𝑙𝑜𝑔(𝑃(𝑜|𝑝))
| (5-3) 

According to the previous sections, the GOP has three problems. Firstly, the GOP is not in a 

determined range which is a deficiency for the continuous phonetic score. Next, the Chain acoustic 

model detects the phonetic spikes instead of the whole segment of the phoneme. Considering the 

introduction and the departure of a phoneme, the middle part of the segments should weigh more when 
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scoring. At last, the English sentences are considered to have rhythms including some rules such as 

slurred phonemes and liaisons between specific phonemes. Therefore, an integration of the sentence 

level score should take the prosodic rhythm into account. 

The proposed SGOP can solve the head two problems. Since the DNN-HMM cannot directly 

compute the segmental level 𝑃(𝑂|𝑝), the segmental level posterior probabilities are represented by the 

mean of the frame-level probabilities. With the fact that the Chain acoustic model is based on phoneme 

spike (in other words, introduce the “blank” for each bi-phone unit). Hence, the maximum posterior 

probability from the middle part of the phoneme (
1

4
 𝑡𝑜 

3

4
) is applied to stand for the 𝑃(𝑂|𝑝). This process 

can also reduce the misalignment. Next, the denominator and the numerator are exchanged with their 

logarithm forms. Under this transformation, the Formula still contains the previous information but 

confined into an [0, 1] interval. The method is more useful for slow speaker since the short phonetic 

duration is not enough for the process. Therefore, the method fits the young English learners well, 

because their speaking speed is much slower than the native (The average phonetic duration of young 

English learner is about 0.176s while the statistic for native is 0.0792s①). For the last problem, a further 

developed GOP method is introduced in the next chapter, based on the combination of rhythm knowledge 

and the GOP. 

 

5.3 Pronunciation Scoring Evaluation on Speech Dataset of Young English Learners 

 

This section focuses on the pronunciation scoring evaluation with a self-collected dataset of young 

English learners. For starters, the dataset is discussed including the collection process, caption process, 

and the data description. Next, there is a comparison between the traditional GOP method and the 

proposed Salient GOP method. 

Since at our best knowledge, there is no public speech corpus on children②, not to mention young 

English learners, the evaluation dataset is self-collected. The corpus contains 2.823 hours (10161.4s) 

English speech from young English learners. The ages of the learners range from post-kindergarten to 

fifth grade of primary school. There are 128 speakers in total with 59 (46.1%) males and 69 (53.9%) 

females③. Each speaker donates 1 paragraph of speech. Because the paragraph is lengthy for speech 

processing (most speech recognition system can only afford speech up to 30s. Long speeches results in 

much more risks in decoding process), the speeches are split into sentences. The splitting process is time-

consuming. A software named “A CUT”④ is employed for splitting. It was developed firstly in 2016 to 

                                                        
① The data is by comparing the TIMIT and the self-collected dataset that is introduced in the next section. 
② By the way, there are some corpora for commercial usage available (such as the PF_STAR children speech corpus recorded from 

British Children and some non-native children speech from European countries). 
③ Some of the data does not contains information of speaker. Consequently, there are situations that some speeches are from the same 

speakers though are separated as different speakers in the dataset. It will not do harm to the general system following except for little 

losses on the CMVN computation process. 
④ The name is translated from Chinese, the real name in Chinese is “一刀切”. 
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generate audio resources of a reading machine for babies. Voice Activity Detection (VAD) is employed 

to detect the sentences’ boundary. The impressive part of the software is the interactive UI to modify the 

boundaries generated from VAD. After splitting, the 128 passages are turned into 2055 sentences. In 

average, each sentence contains 28.1 non-silence phonemes and has a 4.95-second duration. For 

simplification, the corpus names CALL_2K in the following sections. In order to remove the effect of 

omitting words, all the words in the CALL_2K’s transcription have been added to the lexicon dictionary 

(an implemented version of the CMU Dictionary). A traditional ASR process is performed on the 

CALL_2K. The recognition WER (the WER is computed with the reference text) is 51.38%. Comparing 

to the result in Table 3-2, the CALL_2K can be validated as a corpus for non-native. 

The CALL_2K corpus is the third-level CALL dataset that is with the sentence-level annotation. 

Two CALL indexes are defined as following Table 5-1. 

 

Table 5-1 CALL Evaluation Indexes 

Indexes Description 

Pronunciation The naturalness of the pronunciation① 

Fluency The fluency naturalness. 

 

Both the indexes are range from 0 to 10 where 0 is for the worst and 10 is for the best. Two raters 

are chosen for the scoring process. Both are postgraduate with professional English training. The 

strictness of the two raters is different (the means of the pronunciation are 7.5 and 8.8) but on a consensus 

that most of the score is in a range of (6, 10) with a similar scoring curve as shown in Figure 5-1 where 

the light gray curves stand for the Rater 1 and the darker blue curves represent the Rater 2. Since the 

details are not the same, the evaluation of the two raters is not integrated together and is employed 

separately in the following part of the section. 

Pearson, Spearman and Maximal Information Coefficient (MIC) [105] correlation indexes are 

applied for scoring. Since Pearson index measures the absolute similarities and the Spearman index 

measures the ranks, the Spearman is preferred according to the subsection 1.2.1. Since both Pearson and 

Spearman is linear based, MIC is also applied to detect non-linear relationships. 

Since the GOP and SGOP only can compute phone-level measures, methods to compute the three 

indexes are proposed. The computation method is listed in Formula (5-4) to Formula (5-5). 

 𝑃𝑟𝑜𝑛𝑢𝑛𝑐𝑖𝑎𝑡𝑖𝑜𝑛 =  (∑ 𝐺𝑂𝑃(𝑝)
𝑂∈𝛩

|𝑂|) / |𝛩| (5-4) 

 
𝐹𝑙𝑢𝑒𝑛𝑐𝑦 =  ∑ |𝑠|

𝑠∈𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛_𝑤𝑜𝑟𝑑

 / |𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛_𝑤𝑜𝑟𝑑| (5-5) 

                                                        
① The naturalness is if the word is spoken in a native way that sound fluently. The rater is asked to consider the sentence integrity (if the 

words in the sentence can be properly recognized) as well. 
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where 𝛩  denotes the phonetic segments of the sentence, 𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛_𝑤𝑜𝑟𝑑  represents the silence 

segments between words. The experiment applies phoneme dependent thresholds for the traditional GOP 

with parameters 𝛼 =  1.0 and 𝛽 =  −1.5. If the phoneme is rejected, then the score for it is 0 while 

the opposite score for acceptance is 100. 

 

 

(a) 

 

(b) 

Figure 5-1 Scoring Curve of Rater 1 and Rater 2 

 

The result is showing in the following Table 5-2 and Table 5-3. 

 

Table 5-2 The Pronunciation Scoring Experiments 

Method / Rater Pearson-1 Pearson-2 Spearman-1 Spearman-2 MIC-1 MIC-2 

Rater 1  0.573  0.573  0.276 

GOP 0.425 0.297 0.370 0.315 0.182 0.143 

SGOP 0.452 0.287 0.409 0.304 0.212 0.173 

 

Table 5-3 The Fluency Scoring Experiments 

Method / Rater Index Pearson-1 Pearson-2 Spearman-1 Spearman-2 MIC-1 MIC-2 

Rater 1 Flu.  0.637  0.567  0.209 

Fluency Flu. 0.542 0.493 0.589 0.498 0.345 0.269 
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From the correlation indexes between the two raters, it can be found that the two raters generally 

have consensus on the whole corpus. Table 5-2 shows that the SGOP method is more similar to the Rater 

1 while the GOP method is more like Rater 2. There is an about 3% improvement observed from the 

SGOP based on all the indexes comparing to the Rater 1. The GOP only outperforms in 1% on linear 

measures for the Rater2, but it is still worse than SGOP when considering the MIC. Generally, the SGOP 

performs better than the GOP method. 

Since the fluency in this chapter only based on the decoding process, there is no difference between 

the GOP and the SGOP. A surprising finding is that the fluency from forced-alignment even has more 

MIC value to each rater, comparing to the MIC between the two raters. 

 

5.4 Summary 

 
The scoring model is the core of the CALL system. It sums all the information gained from previous 

model to offer scores for L2 Leaners. 

In the first section, we explore the GOP method, the baseline of the CALL task. 

However, the GOP method generally bases on the GMM-HMM / DNN-HMM model and it has no 

considerations on mis-alignment. The Salient GOP (SGOP) is proposed for the above problems. It uses 

the maximum activated posterior probability in the middle of the aligned segments and modifies the 

GOP to scale it into a fixed range. 

The experiments in the last section show that the SGOP slightly outperforms the GOP on most of 

the test indexes. 

 

6.  Prosodic Model 

 
A spoken language without prosody is a human without spirit. It is hard to imagine a speech that is 

full of equal-length accurate phonemes. The various duration of each phoneme brings emotion and 

energy into sentences. The prosody is so important, but it was lack of attention comparing to the 

pronunciation scoring. As discussed in Chapter 2, the prosodic errors are also part of the pronunciation 

error. Therefore, this chapter mainly focuses on the modeling and scoring of the prosodic feature of 

speeches. 

After a brief review of studies on prosodic modeling and evaluation, a duration model is proposed 

for modeling the duration of phonemes. Next, the section discusses the prosodic scoring with the 

duration model. Based on the duration model, a prosodic based GOP method named PGOP is proposed. 

Moreover, experiments are conducted with the CALL_2K corpus. Finally, the last section summarizes 

the whole chapter. 
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6.1 Prosodic Feature and Modeling 

 

According to [6], there are three prosodic parts including stress, intonation, and rhythm. Early in 

20 years ago, it had been found that the human judgment on the prosodic evaluation could reach a high 

consensus [106]. As discussed by Zhang et al., prosodic proficiency is an important part with respect to 

the judgment from the native speakers [107]. The two facts indicate that people have a clear image for 

good prosodies and the prosody for a spoken language is important.  

Several rudimentary experiments were proposed for prosodic evaluation. Bernstein et al. showed 

that human judgment on prosody had a linear relationship with fluency measures① [108]. And [109] 

went further to apply multiple learn regression for prosodic assessment. The Support Vector Regression 

(SVR) is also proposed for the assessment [110]. These attempts on prosodic CALL showed that the 

general prosodic assessment from human raters is predictable. However, the assessments cannot offer 

related suggestions since they are too general. To fill the gap between assessments and suggestions, Chen 

proposed a word-level duration model that can model the duration likelihood based on the context-

dependent word [111]. Not only can the method perform the evaluation, but it can also provide 

suggestions through comparing the test word with the same word occurring in the training set. However, 

since the evaluation fully dependents on the training set, the system cannot work unless all the context-

dependent words are included in the training set (not to mention an unmet word). 

 

6.1.1 Duration Model 

 

It has been widely accepted that the natural language is context dependent. The phonetic duration 

for spoken languages is the same. There are conventional rules on the phonetic rhythm from phoneticians 

[112]. However, it can be inferred that there are still hidden conventions that are not included. So far, 

little attention has been paid to the phonetic duration modeling with the computer instead of some 

dictionary-based methods [111]. This section proposed a word-level duration model with Bidirectional 

Recurrent Neural Network (BiRNN) for phonetic duration modeling as shown in Figure 6-1. 

 

                                                        
① The measures are some preliminary measures such as the word per minutes, total pause time and rate of speech. 
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Figure 6-1 The Phonetic Duration Model 

The input of the model is a one-hot phonetic sequence and the target is to predict a sequence of 

duration. To modeling the long-time dependency, the Long Short-Term Memory (LSTM) model is 

chosen for the RNN model in the framework. To be aware of the context information before and after 

the phoneme, the LSTM is bi-directional. For the duration, a preliminary thought is to cluster duration 

for each phoneme into bins and convert the problem into a classification problem. However, the 

distribution of the phonetic duration is reported to be in an exponential distribution that is not suitable 

for clustering. Therefore, each output of the RNN is fed into a Fully Connected Layer (FC) without a 

Softmax layer for regression. Comparing to the model defined in [111], the framework can extract 

context information on phonemes and adapt to unmet words with the knowledge from the training 

process. 

Two datasets are constructed based on the validated forced alignment decoding model. The source 

data is from the Librispeech dataset. According to the previous introduction on Librispeech, there are 

generally two parts in the Librispeech: a cleaned dataset with 460 hours of speeches and another one 

with 500 hours. To test if the duration model can be more accurate in a clean environment (because the 

WER in the ASR experiment on the clean test set is far lower than the WER on the “other test” set), a 

set of 460 hours and a set with 960 hours is separately trained. The phoneme sequences for the words 

are generated with the implemented CMU Dictionary (discussed in Section 5.3). Since the experiment 

on the TIMIT shows that the forced alignment decoding process is accurate enough to align speeches 

into their phonetic sequence. The forced alignment decoding model with fixed silence (proposed in 

Section 4.2) is applied to generate the duration information. After the alignment, the sentences are split 

into word-level samples①.  

For the words with the same phonetic sequence, the duration is further normalized. The 

normalization process scales the same words into the median duration (the median to prevent effects 

                                                        
① Since the words are represents by phonemes, there maybe some confliction due to words that have the same phonetic sequence (such 

as “sight” and “site”, “straight” and “strait”). Mostly, they are the same. But for some situations, the context may lead to different 

rhythms. It is admitted that there remains systematical error in the system. 
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from abnormal durations) of the word but keeping their relative relationship on the duration. The 

normalization assumes that the phonetic rhythm is comprehended on relative relationships instead of 

absolute relationships①. And the method eases the variation on words’ duration with different speaking 

pace (namely Rate of Speech, ROS in some literature). 

 

6.1.2 Prosodic Scoring 

 

There are three levels for the scoring process including the phone-level the word-level and the 

sentence-level. The scoring process is as follows: 

Firstly, the speech is processed to the forced alignment according to the reference text. Then, the 

aligned speech is split into word-level. Meanwhile, the transcript split to word-level is fed into the 

duration model to compute a template duration relationship for the speech. With the normalization 

technique introduced, the word-level alignments are rescaled. 

Since the relative phonetic duration is not asked to be fixed in the spoken language (not the same 

as music). A variation threshold needs to be computed. The computation process considers the absolute 

errors of the duration model’s evaluation process. The computation extracts the mean and the standard 

deviation of the absolute errors extracted from the duration model training. The scoring method on word-

level is shown in Formula (6-1) and (6-2). 

 𝑃𝑟𝑜𝑠𝑜𝑑𝑦 =  −(∑ 𝛿(𝑝)
𝑝∈𝑃

) / |𝑃| (6-1) 

 𝛿(𝑝) = 𝑀𝑎𝑥(𝑎𝑏𝑠(|(𝐷𝑇𝑟𝑢𝑒  −  𝐷𝑃𝑟𝑒𝑑)|)  −  𝑀𝑒𝑎𝑛(𝐸𝑝)  −  𝑆𝑡𝑑(𝐸𝑝), 0) (6-2) 

where 𝛿(𝑝) is the phone-level scoring function that measures the error exceeding the threshold. The 

𝐷𝑇𝑟𝑢𝑒  −  𝐷𝑃𝑟𝑒𝑑 represents the difference between the true label and the prediction label. The 𝐸𝑝 is the 

absolute prediction erroneous set observed from the duration model training process (To be specific, the 

test set of the duration model). The sentence level prosodic score can be computed as the same of the 

word-level. 

To combine the prosodic assessment into the previous fluency measure (Formula (5-5)), an 

interpolation method is employed as shown in Formula (6-3). 

 𝐹𝑙𝑢𝑒𝑛𝑐𝑦𝑛𝑒𝑤 = 𝛼𝐹𝑙𝑢𝑒𝑛𝑐𝑦𝑝𝑟𝑒 + 𝛽𝑃𝑟𝑜𝑠𝑜𝑑𝑦 +  𝑐 (6-3) 

where 𝛼, 𝛽, and 𝑐 are estimated with a linear regression. 

 

6.1.3 Prosodic GOP (PGOP) 

 

The duration of a phoneme often indicates phonetic importance. A stressed phoneme often has a 

longer duration. Therefore, the speech prominence (stress) detection always implemented duration 

factors [69, 113]. There are also several topics on speech comprehension that the phonetic duration 

                                                        
① It is like music. The same music piece can be played with different tempo but remains its rhythm through keeping the relative 

durations. 
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extensively affected the speech processing mechanism of human [114]. Because the speech 

comprehension process is partially based on the duration prosody, it can be assumed that the 

pronunciation with longer duration plays a more important role in determinization of the integrity (if the 

word can be properly recognized) and naturalness (if the word is spoken fluently) for the language. 

Since the duration model can output a reference duration length for a word-level sequence, a 

Prosodic GOP is proposed as follows: 

 𝑃𝐺𝑂𝑃(𝑝)  =  𝛼𝑝 ∙ 𝑠𝐺𝑂𝑃(𝑝)  + 𝛽𝑝 ∙ 𝛿(𝑝)  ∗  𝑠𝐺𝑂𝑃(𝑝)  + 𝑐𝑝  (6-4) 

where 𝛼𝑝,  𝛽𝑝, and 𝑐𝑝 are estimated with linear regression. The construction of the PGOP based on an 

assumption that a wrong pronunciation with wrong duration does more harm than a wrong pronunciation 

with better duration①. Therefore, the PGOP is a context-related scoring method instead of an independent 

pronunciation error detector. 

 

6.2 Prosodic Scoring Evaluation on Speech Dataset of Young English Learners 

 

This section evaluates the previously proposed methods on the dataset. For the first part, the section 

introduces the construction of duration model and its performance in predicting the phonetic duration. 

Next, the new version of fluency is tested based on the CALL_2K model. At last, the sentence-level 

PGOP measure is evaluated. 

The duration model is a BiRNN with two hidden layers including a bi-directional LSTM and a fully 

connected layer. The Adam optimizer is adopted. The learning rate of the model and the hidden units of 

the two layers are tuned with the Grid Search. The final size of the two layers is 512 and the learning 

rate is determined to be 0.001 at the beginning. Since it is a regression problem, the model applies Mean 

Square Error (MSE) as its loss and Mean Absolute Error (MAE) as its validation metric. Based on the 

experimental training status, there are 4 epochs for training in total. 

Four experiments on the duration model are conducted. The experimental datasets are randomly 

split into three parts at a ratio of 8:1:1 for the training set, the validation set, and the testing set. For each 

dataset, the speeches are first fed into the acoustic model for posteriorgram and then generate duration 

labels through the forced-align decoder. The atomic unit is a 30ms frame due to the acoustic model. The 

normalization is conducted as introduced. The result is shown as following Table 6-1. 

Table 6-1 A Comparison between the Duration Models 

Test Data Set Normalization MAE on the Test Set 

1 460h-clean No 0.9037 

2 960h-all No 0.8902 

3 460h-clean Yes 0.6860 

4 960h-all Yes 0.6647 

                                                        
① For SGOP that is 0, a small positive dithering factor is added to prevent it from erasing the prosody effect. 
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From the above table, the MAE on the test set is above 0.6647 frame (about 20ms), which is 

acceptable for duration modeling. In addition, it can be observed that the introduction of noise data (960-

all dataset) can improve the duration modeling. The reason may due to the forced-align decoding process. 

For the ASR task, the reference text is not pre-defined. The word decoding needs an effective searching 

process. For the CALL task, the searching errors are avoided, which improve the alignment accuracy. 

To further validate the duration model, correlation indexes on Pearson, Spearman, and MIC is computed. 

All the indexes are over 0.5 and the MIC reaches 0.741. 

Based on the duration model, the phonetic prosodic thresholds are shown as following Figure 6-2. 

The thresholds vary from 1.02 frame at “UH” to 2.72 frames at “S”. And the average threshold is 1.68 

frame (about 0.05s). 

 

 

Figure 6-2 The Phonetic Prosodic Thresholds 

 

For the fluency modeling, the linear regression is performed on 70% of the randomly selected 

dataset of the CALL_2K with separate raters. The final estimators are the mean from the two models 

(still ranged to [0, 100]). The 𝛼, 𝛽, and 𝑐 are 0.4086, 0.2115, and 40.15. The evaluation is performed 

on the other 30% set. From Table 6-2, it can be observed that the fluency measures improve much on 

all the indexes for both raters. Since all values of the indexes exceed the inter-correlation indexes 

between the two raters, the method is proved to be robust. 

 

Table 6-2 The Fluency Scoring Experiments 

Method / Rater Pearson-1 Pearson-2 Spearman-1 Spearman-2 MIC-1 MIC-2 

Rater 1  0.637  0.567  0.209 

Traditional Fluency 0.542 0.493 0.589 0.498 0.345 0.269 

Duration Scaled 0.659 0.640 0.659 0.608 0.690 0.578 
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Table 6-3 The PGOP Scoring Experiments 

Method / Rater Pearson-1 Pearson-2 Spearman-1 Spearman-2 MIC-1 MIC-2 

Rater 1  0.573  0.573  0.276 

GOP 0.425 0.297 0.370 0.315 0.182 0.143 

SGOP 0.452 0.287 0.409 0.304 0.212 0.173 

PGOP 0.511 0.347 0.420 0.365 0.232 0.187 

 

Like the fluency modeling, the parameters for PGOP is estimated with 70% of the CALL_2K. The 

𝛼𝑝,  𝛽𝑝, and 𝑐𝑝 are 0.3883, -0.0049 and 51.3421. The result is shown in Table 6-3. On all the measures, 

the PGOP outperforms the GOP method and the SGOP method. It validates the prosodic importance to 

the human’s language comprehension process. 

 

6.3 Summary 

 
The prosody is an always-neglected feature in pronunciation evaluation. This chapter focuses on 

prosody prediction and evaluation based on the context of the phonetic sequences. 

In the first section, the basic duration model is introduced. It models the relative durations given a 

phonetic sequence. The fluency measure and SGOP are further combined with the predicted phonetic 

duration sequences. And we name “PGOP” (Prosodic GOP) for the combination of SGOP and prosodic 

feature. 

The second part conducts several experiments on new fluency and the PGOP. It reveals that the 

introduction of the prosody greatly improves the scoring performances. 

 

7.  Conclusions 

 
This Thesis started from a review of the current state of the art in the CALL tasks, especially its 

combination with the ASR system. A group of algorithms is proposed and evaluated. These methods 

focus on the three main challenges in the CALL for young English learners including the acoustic 

modeling, the scoring structure, and the prosodic assessment. This chapter reviews the results of the 

research and shows several possible directions for further research on the CALL system with young 

English learners. 

For the acoustic model, the Chain model is first employed in a CALL system. It was reported that 

the Chain model that combines the subsampling TDNN-F and the LF-MMI outperforms the CTC 

methods for most of the datasets less than 1000 hours. Based on a traditional DNN-HMM topology, the 

method achieves a WER at 3.8% in the experiment, remarking great modeling for the native. Since 

previous literature stressed much on the speaker adaptation, the training process takes fMLLR and i-
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vectors into consideration as well. For the decoding process, a preliminary Viterbi alignment with the 

graph is performed. However, to be surprised, the result shows that the optional silence model does not 

beat the fixed silence model. Therefore, we apply the fixed silence model for its faster decoding process. 

For the scoring algorithm, a SGOP method is proposed. Based on the acoustic feature of children, the 

method performed better than the baseline GOP algorithm on the CALL_2K (a self-collected corpus). 

The prosodic part introduces two application of a phonetic word-level duration model. With duration 

modeling, we show that the relative phonetic duration is predictable. The prediction result significantly 

improves the fluency scoring and the pronunciation scoring through a regression method. 

Three major contributions can be identified. Firstly, the TDNN-HMM with LF-MMI is proved to 

be a great tool for the CALL acoustic modeling with higher recognition accuracy and more explicit 

posteriorgram. Next, the SGOP is proposed specifically for young English learners. The algorithm fills 

the gap of the specific CALL for children. At last, a duration model is applied to predict the relative 

word-level phonetic duration. Its interpolation forms with the basic fluency measure and the SGOP 

method significantly exceed the baseline algorithms. Apart from the main contributions, the thesis also 

presents a corpus of Chinese young English learner that is self-collected from students range from the 

kindergarten to primary school. 

In future research, the proposed methods can be further extended. 

For the acoustic model, the bi-linguistic model may be further direction on the CALL. According 

to previous literature, a bi-linguistic model can help to detect the errors specifically, and it can accurately 

dig out the confusing phonemes for the non-native. However, the method was not successful due to the 

poor acoustic model. In addition, the native children speech corpora should be added into the acoustic 

training. For this research, the training set lacks native children speech. It may hurt the adaptation process 

with fMLLR and i-vector. 

Another possible extension for the research is the prosodic model. As reported in this thesis, the 

prosodic duration-based model significantly improves the CALL tasks’ performances. The prosody of a 

speech generally contains the stress (prominence), the duration (rhythm) and the pitch (intonation). Since 

the phonetic duration is found to have a relative relationship, it is reasonable to assume that the 

prominence and intonation may have a similar pattern. Therefore, a possible direction for the research 

is to model the phonetic stress and the phonetic pitch. Moreover, only is the duration of word-level 

studied. With so many natural language processing techniques, the duration prediction may be more 

accurate with more context information (e.g. other words or phonemes in the context). 

For newly sprouting studies, some works were proposed to borrow knowledge from mature 

algorithms from other fields. For example, there was CALL research that borrowed the insights from 

machine translation [115]. It treated standard pronunciation as the original language and L2 

pronunciation as the object language. With the mechanism from the machine translation, it can infer 

possible erroneous phonetic sequence. 
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It must be mentioned that the CALL is not stereotyped. There are several new methods other than 

the traditional process. Basically, the new attempts can be classified into four categories: audiovisual 

studies, gamification, and personalization. The audiovisual studies researched on how to build the 3-

dimensional model with acoustic features that can not only detect pronunciation problems but also teach 

students how to pronounce like the native [116, 117, 118]. Another attempt on the CALL is the 

gamification that employed game systems for a better learning efficiency [119, 120, 121]. The 

personalization methods generally adopt the Text-to-Speech (TTS) methods [121, 122, 123]. A typical 

process of their training is to first extract voice feature from users and then generates (or converts) the 

personalized voice for the users. It assumes that users can understand their errors faster with their own 

voices. 
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Appendix: An Example of the CALL System 

 

This appendix gives an example of the proposed CALL system. The example is chosen from the 

CALL_2K corpus. The speech is about 6.5s from a 9-year-old girl. The reference text is “An ant is small. 

But it is strong. It can carry fifty times its weight.”. There are 15 words. In total, 47 phonemes are in the 

sentences where includes 17 vowels and 30 consonants. The raw waveform of the speech is shown in 

Figure A-1. 

 

 

Figure A-1 The Example for the CALL System 

 

The example sentence has an obvious error occurred in the last word “weight”. The true phonetic 

sequence of the word “weight” is “W EY1 T”. However, the actual spoken word is “W AY1 T”, like the 

word “white”. The word is essential and greatly affects the comprehension process. The forced alignment 

process aligns the word “weight” to occurred from 180th frame to 200th frame (which is from 5.4s to 

6.0s). Figure A-2 zooms in the specific word and its alignment details. Based on the posteriorgram, the 

SGOP for the three phonemes are 100, 0, and 100 respectively and their durations are 7, 1, 12 frames (1 

frame has 30ms). The excellence in error detection comes from the powerful acoustic model. 

The recommend duration generated from the duration for “weight” is [1.138, 1.639, 1.709]. The 

duration sequence is then divided by 4.486 (the sum of the duration sequence) and multiplied 20. The 

sequence hence becomes [5.073, 7.307, 7.619]. Comparing with the error threshold (pre-computed from 

the duration model) [1.6691, 1.6738, 2.2753], the phonetic-prosodic errors are [0.2579, 7.9808, 2.1057]. 

With traditional GOP method, the prosodic error cannot be detected. Therefore, the average GOP for the 

erroneous word is still high (95 / 100 for the “weight”). The PGOP (70 / 100) on the otherwise can detect 

the abnormal duration and boost the error for the word with prosody. 
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EY1

W T

AY1

 

Figure A-2 The Error Word “Weight” 

 

Additionally, the prosodic duration can offer suggestions instead of purely working for scoring. The 

prosodic error computed in the previous discussion can be generated for prosody suggestions. With a 

high accurate duration prediction, the suggestions can be useful. 

 

 


