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Abstract. In this paper, we present TED-LIUM release 3 corpus3 ded-
icated to speech recognition in English, which multiplies the available
data to train acoustic models in comparison with TED-LIUM 2, by a
factor of more than two. We present the recent development on Auto-
matic Speech Recognition (ASR) systems in comparison with the two
previous releases of the TED-LIUM Corpus from 2012 and 2014. We
demonstrate that, passing from 207 to 452 hours of transcribed speech
training data is really more useful for end-to-end ASR systems than for
HMM-based state-of-the-art ones. This is the case even if the HMM-
based ASR system still outperforms the end-to-end ASR system when
the size of audio training data is 452 hours, with a Word Error Rate
(WER) of 6.7% and 13.7%, respectively. Finally, we propose two repar-
titions of the TED-LIUM release 3 corpus: the legacy repartition that is
the same as that existing in release 2, and a new repartition, calibrated
and designed to make experiments on speaker adaptation. Similar to the
two first releases, TED-LIUM 3 corpus will be freely available for the
research community.

Keywords: Speech recognition · Opensource corpus · Deep learning ·
Speaker adaptation · TED-LIUM.

1 Introduction

In May 2012 and May 2014, the LIUM team released two versions (respectively
118 hours of audio and 207 hours of audio) from the TED conference videos which
were since widely used by the ASR community for research purposes. These
corpora were called TED-LIUM, release 1 and release 2, presented respectively
in [10] and [11]. Ubiqus joined these efforts to pursue the improvements both
from an increased data standpoint, as well as from a technical achievement one.
We believe that this corpus has become a reference and will continue to be

3 TED-LIUM 3 is available on https://lium.univ-lemans.fr/ted-lium3/

ar
X

iv
:1

80
5.

04
69

9v
4 

 [
cs

.C
L

] 
 1

3 
Ju

n 
20

19

https://www.ubiqus.com
https://lium.univ-lemans.fr/
https://lium.univ-lemans.fr/ted-lium3/


2 F. Hernandez et al.

used by the community to improve further the results. In this paper, we present
some enhancements regarding the dataset, by using a new engine to realign
the original data, leading to an increased amount of audio/text, and by adding
new TED talks, which combined with the new alignment process, gives us 452
hours of aligned audio. A new data distribution is also proposed that is more
suitable for experimenting with speaker adaptation techniques, in addition to the
legacy distribution already used on TED-LIUM release 1 and 2. Section 2 gives
details about the new TED-LIUM 3 corpus. We present experimental results with
different ASR architectures, by using Time Delay Neural Network (TDNN) [5]
and Factored TDNN (TDNN-F) acoustic models [7] on the legacy distribution
of TED-LIUM 3 in section 3, and also exploring the use of a pure neural end-
to-end system in section 4. In section 5, we report experimental results obtained
on the speaker adaptation distribution by exploiting GMM-HMM and TDNN-
Long Short-Term Memory (TDNN-LSTM) [6] acoustic models and two standard
adaptation techniques (i-vectors and feature space maximum linear regression
(fMLLR)). The final section is dedicated to discussion and conclusion.

2 TED-LIUM 3 Corpus Description

2.1 Data, Alignment and Filtering

All raw data (acoustic signals and closed captions) were extracted from the
TED website. For each talk, we built a sphere audio file, and its corresponding
transcript in stm format. The text from each .stm file was automatically aligned
to the corresponding .sph file using the Kaldi toolkit [8]. This consists of the
adaptation of existing scripts 4, intended to first decode the audio files with a
biased language model, and then align the obtained .ctm file with the reference
transcript. To maximize the quality of alignments, we used our best model (at
the time of corpus preparation) trained on the previous release of the TED-
LIUM corpus. This model achieved a WER of 9.2% on both development and
test sets without any rescoring. This means the ratio of aligned speech versus
audio from the original 1,495 talks of releases 1 and 2 has changed, as well as
the quantity of words retained. It increased the amount of usable data from the
same basis files by around 40% (Table 1). In the previous release, aligned speech
represented only around 58.9% of the total audio duration (351 hours). With
these new alignments, we now cover around 83.0% of audio.

A first set of experiments was conducted to compare equivalent systems
trained on the two sets of data (Table 2). With strictly equivalent models, there
is no clear improvement of results for the proposed new alignments. Yet, there is
no degradation of performance either. We will show in further experiments that
the increased amount of data will not just be harmless, but also useful.

4 https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/

cleanup/segment_long_utterances.sh

https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/cleanup/segment_long_utterances.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/cleanup/segment_long_utterances.sh
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Table 1. Maximizing alignments - TED-LIUM release 2 talks.

Characteristic
Alignments

Evolution
Original New

Speech 207h 290h 40.1%

Words 2.2M 3.2M 43.1%

Table 2. Comparison of training on original and new alignments for TED-LIUM release
2 data (Experiments conducted with the Kaldi toolkit - details in Section 3).

Model (rescoring)
Original - 207h New - 290h
Dev Test Dev Test

HMM-GMM (none) 19.0% 17.6% 18.7% 17.2%
HMM-GMM (Ngram) 17.8% 16.5% 17.7% 16.1%
HMM-TDNN-F (none) 8.5% 8.3% 8.2% 8.3%

HMM-TDNN-F (Ngram) 7.8% 7.8% 7.7% 7.9%
HMM-TDNN-F (RNN) 6.8% 6.8% 6.6% 6.7%

2.2 Corpus Distribution: Legacy Version

The whole corpus is released as what we call a legacy version, for which we keep
the same development and test sets as the first releases. Table 3 summarizes
the characteristics of text and audio data of the new release of the TED-LIUM
corpus. Statistics from the previous and new releases are presented, as well as
the evolution between the two. Additionally, we mention that aligned speech
(including some noises and silences) represents around 82.6% of audio duration
(540 hours).

Table 3. TED-LIUM 3 corpus characteristics.

Characteristic
Corpus

Evolution
v2 v3

Total duration 207h 452h 118.4%
- Male 141h 316h 124.1%
- Female 66h 134h 103.0%

Mean duration 10m 12s 11m 30s 12.7%

Number of unique
speakers

1242 2028 63.3%

Number of talks 1495 2351 57.3%

Number of segments 92976 268231 188.5%

Number of words 2.2M 4.9M 122.7%

2.3 Corpus Distribution: Speaker Adaptation Version

Speaker adaptation of acoustic models (AMs) is an important mechanism to re-
duce the mismatch between the AMs and test data from a particular speaker, and
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today it is still a very active research area. In order to design a suitable corpus
for exploring speaker adaptation algorithms, additional factors and dataset char-
acteristics, such as number of speakers, amount of pure speech data per speaker,
and others, should be taken into account. In this paper, we also propose and
describe the training, development and test datasets specially designed for the
speaker adaptation task. These datasets are obtained from the proposed TED-
LIUM 3 training corpus, but the development and test sets are more balanced
and representative in characteristics (number of speakers, gender, duration) than
the original sets and more suitable for speaker adaptation experiments. In addi-
tion, for the development and test datasets we chose only speakers who are not
present in the training data set in other talks. The statistics for the proposed
data sets are given in Table 4.

Table 4. Data sets statistics for the speaker adaptation task. Unlike the other tables,
the duration is calculated only for pure speech (excluding silence, noise, etc.).

Characteristic
Data set

Train Dev. Test

Duration of speech,
hours

Total 346.17 3.73 3.76
Male 242.22 2.34 2.34

Female 104.0 1.39 1.41

Duration of speech
per speaker, minutes

Mean 10.7 14.0 14.1
Min. 1.0 13.6 13.6
Max. 25.6 14.4 14.5

Number of speakers
Total 1938 16 16
Male 1303 10 10

Female 635 6 6

Number of words Total 4437K 47753 43931

Number of talks Total 2281 16 16

3 Experiments with State-of-the-art HMM-based ASR
System

We conducted a first set of experiments on the TED-LIUM release 2 and 3
corpora using the Kaldi toolkit. These experiments were based on the existing
recipe 5, mainly changing model configurations and rescoring strategies. We also
kept the lexicon from the original release, containing 159,848 entries. For this,
and all other experiments in this paper, no glm files were applied to deal with
equivalences between word spelling (e.g. doctor vs. dr).

5 https://github.com/kaldi-asr/kaldi/tree/master/egs/tedlium/s5_r2

https://github.com/kaldi-asr/kaldi/tree/master/egs/tedlium/s5_r2
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3.1 Acoustic Models

All experiments were conducted using chain models [9] with the now well-known
TDNN architecture [5] as well as the recent TDNN-F architecture [7]. Training
audio samples were randomly perturbed in speed and volume during the training
process. This approach is commonly called audio augmentation and is known to
be beneficial for speech recognition [4].

3.2 Language Model

Two approaches were used, both aiming at rescoring lattices. The first one is an
N-gram model of order 4 trained with the pocolm toolkit6, which was pruned to
10 million N-grams. We also considered a RNNLM with letter-based features and
importance sampling [15], coupled with a pruned approach to lattice-rescoring
[14]. The RNNLM we retained was a mixture of three TDNN layers with two
interspersed LSTMP layers [12] containing around 10 million parameters. The
latter helps to reduce the word error rate drastically. We used the same corpus
and vocabulary in both methods, which are those released along with TED-LIUM
release 2. These experiments were conducted prior to the full preparation of the
new release, so we only appended text from the original alignments of release 2 to
this corpus. In total, the textual corpus used to train language models contains
approximately 255 million words. These source data are described in [11].

3.3 Experimental Results

In this section, we present the recent development on Automatic Speech Recog-
nition (ASR) systems that can be compared with the two previous releases of the
TED-LIUM Corpus from 2012 and 2014. While the first version of the corpus
achieved a WER of 17.4% at that time, the second version decreased it to 11.1%
using additional data and Deep Neural Network (DNN) techniques.

TDNN Our basis chain-TDNN setup is based on 6 layers with batch normal-
ization, and a total context of (-15,12). Prior tuning experiments on TED-LIUM
release 2 showed us that the model did not improve beyond the dimension of
450. More than doubling the training data allows the training of bigger, and
better, models of the same architecture as shown in Table 5.

As part of experiments in tuning Kaldi models, it appeared that a form of L2
regularization could help to allow training for longer with less risk to overfit. This
was implemented in Kaldi as the proportional-shrink option. Some tuning
on TED-LIUM 2 data gave the best result for a value of 20. All experiments
presented in Table 5 were realized with this value to keep a consistent baseline.
Aiming to reduce the WER even more, and with time constraints, we chose to
train again the model with dimension 1024, with a proportional-shrink value of

6 https://github.com/danpovey/pocolm

https://github.com/danpovey/pocolm
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Table 5. Tuning the hidden dimension of chain-TDNN setup on TED-LIUM release 3
corpus.

Dimension
WER WER - Ngram WER - RNN

Dev Test Dev Test Dev Test

450 9.0% 9.1% 8.0% 8.4% 6.9% 7.3%

600 8.7% 8.9% 8.0% 8.4% 6.6% 7.3%

768 8.3% 8.6% 7.6% 8.1% 6.5% 7.0%

1024 8.3% 8.5% 7.5% 8.0% 6.4% 6.9%

10 (as we approximately doubled the size of the corpus). After RNNLM lattice-
rescoring, the WER decreased to 6.2% on the dev set and 6.7% on the test.

TDNN-F As a final set of experiments, we tried the recently-introduced factor-
ized TDNN approach, which again resulted in significant improvements in WER
for both TED-LIUM release 2 and 3 corpora (Table 6).

Table 6. Factorized TDNN experiments on TED-LIUM release 2 and 3 corpora.

Corpus Model
WER WER - Ngram WER - RNN

Dev Test Dev Test Dev Test

r2
TDNN-F - 11 layers -
1280/256 - ps20

8.5% 8.3% 7.8% 7.8% 6.8% 6.8%

r3
TDNN-F - 11 layers -
1280/256 - ps10

7.9% 8.1¡% 7.4% 7.7% 6.2% 6.7%

4 Experiments with Fully Neural End-to-end ASR
System

We also conducted experiments to evaluate the impact of adding data to the
training corpus in order to build a neural end-to-end ASR. The system with
which we experimented does not use a vocabulary to produce words, since it
emits sequences of characters.

4.1 Model Architecture

The fully end-to-end architecture used in this study is similar to the Deep Speech 2
neural ASR system proposed by Baidu in [1]. This architecture is composed of
nc convolution layers (CNN), followed by nr uni or bidirectional recurrent lay-
ers, a lookahead convolution layer [13], and one fully connected layer just before
the softmax layer, as shown in Figure 1. The system is trained end-to-end by
using the CTC loss function [2], in order to predict a sequence of characters from
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1D or 2D
Invariant
Convolution

GRU or LSTM
Uni or Bi directional

Lookahead Convolution

Spectrogram

character sequence

Fully connected
Softmax

Fig. 1. Deep Speech 2 -like end-to-end architecture for speech recognition.

the input audio. In our experiments, we used two CNN layers and six bidirec-
tional recurrent layers with batch normalization as mentioned in [1]. Given an
utterance xi and label yi sampled from a training set X = (x1, y1), (x2, y2), ...,
the RNN architecture has to train to convert an input sequence xi into a final
transcription yis. For notational convenience, we drop the superscripts and use
x to denote a chosen utterance and y the corresponding label. The RNN takes
as input an utterance x represented by a sequence of log-spectrograms of power
normalized audio clips, calculated on 20ms windows. As output, all the charac-
ters l of a language alphabet may be emitted, in addition to the space character
used to segment character sequences into word sequences (space denotes word
boundaries) and a blank character useful to absorb the difference in a time series
length between input and output in the CTC framework. The RNN makes a pre-
diction p(lt|x) at each output time step t. At test time, the CTC model can be
coupled with a language model trained on a large textual corpus. A specialized
beam search CTC decoder [3] is used to find the transcription y that maximizes:

Q(y) = log(p(lt|x)) + αlog(pLM(y)) + βwc(y) (1)

where wc(y) is the number of words in the transcription y. The weight α controls
the relative contributions of the language model and the CTC network. The
weight β controls the number of words in the transcription.

4.2 Experimental Results

Experiments were made on the legacy distribution of the TED-LIUM 3 corpus
in order to evaluate the impact on WER of training data size for an end-to-end
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speech recognition system inspired by Deep Speech 2. In these experiments, we
used an open source Pytorch implementation7.

Three training datasets were used: TED-LIUM 2 with original alignment
(207h of speech), TED-LIUM 2 with new alignment (290h), and TED-LIUM 3
(452h), as presented in section 2.1 and section 2.2. They correspond to the three
possible abscissa values (207, 290, 452) in figure 4.2. For each training dataset,
the ASR tuning and the evaluation were respectively made on the TED-LIUM
release 2 development and test dataset, similar to the experiments presented in
section 3.3. Figure 4.2 presents results in both WER (left side), and Character
Error Rate (CER, right side) on the test dataset. Evaluation in CER is inter-
esting because the end-to-end ASR system is trained to produce sequences of
characters, instead of sequences of words.
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Fig. 2. Word error rate (left) and character error rate (right) on the TED-LIUM 3
legacy test data for three end-to-end configurations according to the training data
size.

For each training dataset, three configurations have been tested:

– the Greedy configuration, in blue in Figure 4.2 that consists of evaluating
sequences of characters directly emitted from the neural network by gluing
all the characters (including spaces to delimit words);

– the Greedy+augmentation configuration, in red, which is similar to the
Greedy one, but in which each training audio samples is randomly perturbed
in gain and tempo for each iteration [4];

7 https://github.com/SeanNaren/deepspeech.pytorch

https://github.com/SeanNaren/deepspeech.pytorch
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– the Beam+augmentation configuration, in brown, achieved by applying a
language model through a beam search decoding on the top of the neural
network hypotheses using the Greedy+augmentation configuration. This lan-
guage model is the cantab-TEDLIUM-pruned.lm3 provided with the Kaldi
TEDLIUM recipe.

As expected, the best results in WER and CER are achieved by the
Beam+augmentation configuration, with a WER of 13.7% and a CER of 6.1%.
Regardless of the configuration, increasing training data size significantly im-
proves the transcription quality: for instance, while the Greedy mode reached a
WER of 28.1% with the original TED-LIUM 2 data, it reaches 20.3% with TED-
LIUM 3 . We can observe that with TED-LIUM 3, the Greedy+augmentation
configuration gets a lower WER than the Beam+augmentation one when trained
with the original TED-LIUM 2 data. This shows that increasing the training
data size for the pure end-to-end architecture offers a higher potential for WER
reduction than using an external language model in a beam search decoding.

5 Experiments with the Speaker Adaptation Distribution

In this section, we present results of speaker adaptation experiments on the adap-
tation version of the corpus described in Section 2.3. In this series of experiments,
we trained three pairs of AMs. In each pair, we trained a speaker-independent
(SI) AM and a corresponding speaker adaptive trained (SAT) AM. We explore
two standard adaptation techniques: (1) i-vectors for a TDNN-LSTM and (2) fea-
ture space maximum linear regression (fMLLR) for a GMM-HMM and a TDNN-
LSTM. The Kaldi toolkit [8] was used for these experiments. First, we trained
two GMM-HMM AMs on 39-dimensional features MFCC-39 (13-dimensional
Mel-frequency cepstral coefficients (MFCCs) with ∆ and ∆∆): (1) a SI AM and
(2) a SAT model with fMLLR. Then, we trained four TDNN-LSTM AMs. All
TDNN-LSTM AMs have the same topology, described in [6], and differ only
in the input features. They were trained using LF-MMI criterion [9] and 3-fold
reduced frame rate. For the first SI TDNN-LSTM AM, 40-dimensional MFCCs
without cepstral truncation (hires MFCC-40) were used as the input into the
neural network. For the corresponding SAT model, i-vectors were used (as in the
standard Kaldi recipe). For the second SI TDNN-LSTM AM, MFCC-39 features
(the same as for the GMM-HMM) were used, and the corresponding SAT model
was trained using fMLLR adaptation. The 4-gram pruned LM was used for the
evaluation8. Results in terms of WER are presented in Table7.

8 This LM is similar to the ”small” LM trained with the pocolm toolkit, which is used
in the Kaldi tedlium s5 r2 recipe. The only difference is that we modified a training
set by adding text data from TED-LIUM 3 and removing from it those data, that
present in our test and development sets (from the adaptation corpus).
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Table 7. Speaker adaptation results for the speaker adaptation task (on the corpus
described in Section 2.3. MFCC-39 denotes 13-dimensional MFCCs appended with ∆
and ∆∆; hires MFCC-40 denotes 40-dimensional MFCCs without cepstral truncation).

Model Features WER,% – Dev. WER,% – Test

GMM SI MFCC-39 20.69 18.02

GMM SAT MFCC-39 – fMLLR 16.47 15.08

TDNN-LSTM SI hires MFCC-40 7.69 7.25

TDNN-LSTM SAT hires MFCC-40 ⊕ i-vect 7.12 7.10

TDNN-LSTM SI MFCC-39 8.19 7.54

TDNN-LSTM SAT MFCC-39 – fMLLR 7.68 7.34

6 Discussion and Conclusion

In this paper, we proposed a new release of the TED-LIUM corpus, which doubles
the quantity of audio with aligned text for acoustic model training. We showed
that increasing this training data reduces the word error rate obtained by a state-
of-the-art HMM-based ASR system very slightly, passing from 6.8% (release 2)
to 6.7% (release 3) on the legacy test data (and from 6.8% to 6.2% on the legacy
dev data). To measure the recent advances realized in ASR technology, this
word error rate can be compared to the 11.1% reached by such a state-of-the-art
system in 2014 [10]. We were also interested in emergent neural end-to-end ASR
technology, known to be very voracious in training data. We noticed that without
external knowledge, i.e. by using only aligned audio from TED-LIUM 3, such
technology reaches a WER of 17.4%, which is exactly the WER reached by state-
of-the-art ASR technology in 2012 with the TED-LIUM 1 training data. Assisted
by a classical 3-gram language model used in a beam search on top of the end-to-
end architecture, this WER decreases to 13.7% with the TED-LIUM 3 training
data, while with the TED-LIUM 2 training data the same system reached a
WER of 20.3%. Increasing training data composed of audio with aligned text
for this kind of ASR architecture still seems very important in comparison to
the HMM-based ASR architecture that reaches a plateau on such TED data,
with a low WER of 6.7%. Finally, we propose a new data distribution dedicated
to experimenting on speaker adaptation, and propose some results that can be
considered as a baseline for future work.

Acknowledgments. This work was partially funded by the French ANR Agency
through the CHIST-ERA M2CR project, under the contract number ANR-15-
CHR2-0006-01, and by the Google Digital News Innovation Fund through the
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