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ABSTRACT

We introduce a novel metric for speech recognition success
in voice search tasks, designed to reflect the impact of speech
recognition errors on user’s overall experience with the sys-
tem. The computation of the metric is seeded using intuitive
labels from human subjects and subsequently automated by
replacing human annotations with a machine learning algo-
rithm. The results show that search-based recognition accu-
racy is significantly higher than accuracy based on sentence
error rate computation, and that the automated system is very
successful in replicating human judgments regarding search
quality results.

Index Terms— voice search, semantic accuracy

1. INTRODUCTION

There is a well established set of success criteria for ASR.
Among them, word error rate (WER) and sentence error rate
(SER) are the two most commonly used. However, these met-
rics (as well as others such as perplexity of language models)
often fail to reflect the real usefulness of the speech recogni-
tion system to the user. Except for the dictation task, where
speech recognition is the means and purpose of the task, most
other systems avail themselves of ASR to achieve higher level
goals, for instance, execute a spoken command or connect a
call to the right operator. As a result, perfect speech recog-
nition and ultimate task success cannot be considered inter-
changeable quantities any longer. A command can be recog-
nized but not understood; similarly recognized text does not
have to be exactly what the user has said to turn into a desir-
able meaningful interpretation.

Because of this, a number of alternative task-specific met-
rics have found their applications across the field. Spoken
dialog systems realized via context-free grammars [1] (e.g.
early call routers) typically reduce the language of the en-
coded word sequences to an enumerable set of semantic val-
ues. Open-ended dialog systems allow for practically uncon-
strained language but end up internally representing it as a
finite hierarchy of pre-defined topics (e.g. call types) possibly
accompanied by a number of topic specific parameters [2, 3].
Another example is the directory assistance systems that are
successful as long as they correctly recognize the localityand
business names parts of the requests.

Voice search applications demand their own task specific
success criteria, and it is clear that these criteria must have

to do with users’ objective of finding relevant search results
for their queries. Similarly to the examples above, even if
automatic transcriptions produced by ASR contain errors, the
quality of the search results found by the downstream search
engine is not doomed to degrade. For instance, misrecogniz-
ing “the home depot”as“home depot”has no effect on the
found web pages. Similarly, misrecognition of“another one
bites the dust”as “another one bites the dusk”should not
stop any search engine from finding the right sites.

On the other hand, it is well known that human transcrip-
tions, though expected to deliver a gold standard for speech
transliteration, are also prone to errors or controversialde-
cisions. However, many of these errors are of pure lexical
nature and do not affect semantics. For instance, a transcriber
could spell“Facebook” as “face book”. Many other tran-
scription errors are mere typos that do not affect our under-
standing either (e.g.“Gooogle” ).

Good evaluation methods need to be able to disregard
these irrelevant misrecognitions and only focus on the parts
that matter. We started off by experimenting with various nor-
malization options trying to address lexical variations deemed
semantically irrelevant. For instance, instead of computing
SER, we would remove spaces from both references and hy-
potheses, and then see whether the two obtained strings are
equal. Other normalization options included removing apos-
trophes and even ignoring plurals. While this normalization
helped ignoring insignificant differences in some cases, it
failed in many others. The above case of“the home depot”
is one example. On the contrary, recognizing“you r good”
instead of“your good” or “who” instead of“the who” leads
to clearly bogus search results.

Another common approach to address the inadequacy of
metrics such as WER is to give greater weight to information
bearing words. In [4, 5] alternative error metrics were pro-
posed that incorporated word salience into the computation.
For the document retrieval task, the metric in [4] relied on
instances of named entities, stop words, and salient query
words, and exhibited better correlation with the retrievalac-
curacy. The metric from [5] assigned IDF-based salience
weighting to individual words. Our preliminary experiments
indicated that even these approaches would still not be able
to solve many of the issues in voice search.

Thus it became obvious that one does indeed need to in-
clude search engine in the ASR evaluation loop. One exam-



ple of how this can be done is the Web Score, described in
[6] where speech recognition is considered a success when
the top search results for reference and hypothesis are identi-
cal. However, our experiments indicated that this metric can
be insufficient, especially in cases where there is no obvious
best result or where there are several of them. In the remain-
der of this paper we describe our approach to a search-based
speech recognition accuracy metric that is based on human
intuition. First, in Section 2 we explain the motivation behind
it and describe the process of obtaining gold standard refer-
ences for search-based ASR evaluation. Then, in Section 3 a
regression method for replicating these references will bede-
scribed. Section 4 is dedicated to analysis of the new metric
and how it compares to other success criteria. We complete
the paper with a discussion section.

2. INTUITIVE ERROR METRIC FOR SEARCH
RESULTS

In search engine tuning, it is common to rely on the dis-
counted cumulative gain (DCG) and its normalized variants.
DCG is essentially an average of human graded relevance
scores of search results, weighted by the position of each re-
sult [7]. Similarly, for the task of assessing impact of speech
recognition errors on the end-to-end user experience, we de-
cided to start by relying on human intuition. Our application
domain is Bing Voice Search for Mobile where users run a
smart phone application to type or speak search queries that
will be passed to Bing search engine, with search results dis-
played on screen. We compiled a training set of 3K voice
queries to have roughly equal number of correctly and incor-
rectly recognized utterances (i.e. 50% SER).

Instead of using DCG directly, for each voice search query
in our training set, we took its manual transcription (refer-
ence) and recognition output (hypothesis) and sent both to the
Bing search engine retrieving up to 20 top-ranked search re-
sults for each. We would then present the two sets of results
to two human labelers, asking them to grade the quality of
the search results for the hypothesis given the search results
for the reference. In order to solicit intuitive judgments,we
provided the labelers with only a minimum amount of instruc-
tions, asking them to issue one of the four possible grades:

0: search results are very different
1: search results exhibit some similarity
2: search results are very similar
3: search results are identical (or nearly identical)

If search results for the reference were of insufficient quality,
we still recommended the labelers to make judgments solely
based on search result comparison.

After the first 100 queries, we let the labelers discuss their
annotations with each other to facilitate calibration. After
that, they proceeded to annotate the remaining queries1. Ta-
ble 1 shows the confusion matrix for the two labelers anno-
tations on utterances with different reference and hypothesis

1In reality, only half of the queries required manual annotations for refer-
ences and hypotheses were identical in the rest of the cases.

texts. The labelers agreed on 85% of all queries, with the
inter-labelerκ = 0.7. However, merging labels 0 and 1, and
2 and 3 respectively, resulted inκ = 0.86. Agreement was
the easiest to achieve on the ends of the spectrum (that were
also best represented). Most of the disagreements could be
attributed to only a 1-grade difference (0 vs. 1, 1 vs. 2, or 2
vs. 3), and in these cases we took the mean as the final label.
Only 36 cases were due to a difference by two or more grades,
and the labelers were asked to adjudicate them.

labeler1\ labeler2 0 1 2 3
0 956 74 5 3
1 16 41 9 3
2 10 38 43 7
3 3 12 53 248

Table 1. Inter-labeler agreement search-based scores.

2.1. Using Annotations to Judge Recognition Accuracy

We then introduced the obtained labels in the recognition
evaluation framework. First, we linearly normalized the
annotator-provided grades to the[0; 1] range (grade 3 be-
ing mapped to 1.0) and denoted the obtained values“search
quality score” (SQS). Let there beN queries in the test cor-
pus. Assuming that each recognition is accompanied by its
confidence, and that recognition result will be accepted iff
its confidence is greater than some pre-specified confidence
thresholdθ, we define two corpus-level metrics as functions
of θ: correct accept rate (CA) and false accept rate (FA).

CA :=
1

N
×

N
∑

i=1

{

SQSi if confi ≥ θ
0 otherwise

(1)

FA :=
1

N
×

N
∑

i=1

{

1 − SQSi if confi ≥ θ
0 otherwise

(2)

We can then plot a“Voice Search Quality”(VSQ) curve as
a dependency ofCA on FA subject to changingθ. In Sec-
tion 4 we will show how this evaluation criterion compares to
the more traditional sentence error rate (SER) based curvesin
whichCA andFA are also computed according to (1) and (2)
except that a binary match metric is used instead of (generally
real-valued)SQS. We will also note the differences between
reference and hypothesis word strings for which VSQ curves
show different sensitivity than SER.

3. REPLICATING SEARCH SCORES

Having humans evaluate similarities of sets of search results
is not only very expensive but also time consuming. For in-
stance, our two annotators spent between 30 seconds and 2
minutes per query. Obviously, this is not acceptable for an
evaluation procedure that is supposed to be run every time
there is a change in the test set or in the system. Therefore,
our next goal is to remove humans from this annotation loop2.

2We would still use human annotators to produce utterance transcriptions.



To do that, we decided to extract a plurality of observable fea-
tures from the pairs of search results sets and use statistical
learning to map these features onto the space of SQS scores.

3.1. Classification Features

There are several groups of features that we included in our
experiments:

• absolute numbers of search results for reference and
hypothesis

• can reference and hypothesis be reduced to one another
using Bing spell checking mechanisms

• weighted recall and precision of found page titles on
both lists with weights reflecting source and target
ranks. For instance, the exact formula for recall is:

R :=
1

Z
×

N
∑

i=1

1

i
×

N − max(Hi −i, 0)

N
(3)

whereN is the maximum number of search results to
consider,i iterates over ranks of all reference search
results,Hi is the rank of theith reference search result
among the search results found for the hypothesis (and
is set equal toN + i if hypothesis search results do not
contain it), andZ is a normalization coefficient

∑

i
1/i.

• similar metrics for word 1/2/3-grams in the titles

• we also took advantage of the RANKER tool developed
by the BING search team to automatically evaluate
appropriateness of an arbitrary page for an arbitrary
query. The tool is trained to produce scores compara-
ble across query/page pairs. Specifically, we compute
four measurements: average score of hypothesis search
results for the hypothesis query (weighted by page
ranks), average score of reference search results for the
hypothesis query, as well as analogous two metrics for
the reference query.

Thus, a total of 15 features were extracted for each of the 1500
queries for which ASR misrecognized at least one word.

3.2. Results

We trained a linear SVM regression model to approximate
SQS values via features above. To compensate for a small
sample size (consequence of a laborious labeling process),5-
fold cross-validation was employed. With target values all
lying between 0 and 1 (cf. Section 2.1; average of 0.26; stan-
dard deviation of 0.39) the mean square error of the regressed
values was measured to be 0.038. Alternatively, casting the
problem as classification (with four classes correspondingto
the original categories suggested to labelers) and using boost-
ing to compute classification accuracy, we obtained classifi-
cation accuracy of about 90%. Most confusions happened
between neighbor classes. To put this numbers in perspec-
tive, we plotted two VSQ curves: one for SQS derived from
manual annotations, and another from predicted SQS values.

In Figure 1 these two curves appear virtually identical for
all confidence thresholds, meaning that we have successfully
excluded humans from the annotation loop and can conduct
our further analysis based on the predicted SQS values. It
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Fig. 1. VSQ curves based on regressed SQS values replicate
nearly perfectly the curves based on manual labels.

should be noticed that the features from the ranking group
contributed to classification accuracy about 1.5% absolute.
However, since obtaining these features is time consuming,
in some practical settings we would also experiment without
them. Fortunately, it appeared that absence of these features
did not introduce any bias in the VSQ metric.

4. VSQ CURVES VS TRADITIONAL ERROR
METRICS

In this section we compare voice search quality curves with
traditional criteria used to evaluate speech recognition quality,
such as sentence error rates and variations thereof.

There are two dimensions to direct our investigations
along. First, we provide a quantitative analysis of the num-
bers, and then dive into individual cases that explain the
differences in corpus-based metrics.

For 3K voice search queries, Figure 2 plots the VSQ curve
(against regressed labels) and three baselines:

1. SER-based curve: each utterance contributing either
1.0 (if reference and hypothesis are the same) or 0.0;

2. similar but both reference and hypothesis are normal-
ized to remove spaces, apostrophes etc.

3. search-based evaluation approach from [6]: recognition
is considered a success iff the first top-ranked search
results for reference and hypothesis agree.

We see that the VSQ curves (that we consider a direct deriva-
tive from human intuition and, therefore, the most reliable
way of estimating misrecognition impact on user experience
with the search application) are conveying a different mes-
sage than other baselines. At zero confidence threshold, the
search-based accuracy rates are about 15% absolute higher
than measured sentence accuracy, and more than 10% abso-
lute higher than sentence accuracy after text normalization. In
fact, the VSQ accuracy is closer to the word accuracy (67%
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Fig. 2. VSQ curves reflecting human intuition are quite dif-
ferent from all other baselines.

in this case) than to sentence accuracy. Moreover, the curves
indicate that identity of top-rank search results does not con-
stitute a good estimate of user experience with the system, but
underestimates it by a significant margin.

To better understand differences between normalized
SER and search-based accuracy, we analyzed the queries
whose normalized-SER and search-based evaluations dif-
fered. There were 472 such queries, and only for 6 of them
the search-based evaluation assigned a lower score than nor-
malized SER. For instance,“incase” was recognized as“in
case”. We therefore focused on the cases where high SQS
corresponded to SER-based FA (60% of all cases). Of these
(purported) misrecognitions, 15% were due to plural forms,
additional 20% were caused by errors in one-letter and/or
function words, and further 20% were accounted by syn-
onyms, alternative spelling variants or typos. The rest of the
misrecognitions could be ascribed to miscellaneous causes,
such as missing content words that did not stop the search
engine from finding good hits.

We have experimented with the VSQ in three different
setups. First, to make sure the curves remain sensitive to
small random language model changes, we pruned our lan-
guage model with seven different thresholds (Stolcke prun-
ing). The results showed that confidence zero VSQ numbers
correlated strongly (Pearson coefficient 0.998) with the sen-
tence accuracy. In the second setup we ran spelling correc-
tion on ASR results. While this improved SER by 2% rela-
tive, the VSQ curves, as expected, were not affected. Thus,
the VSQ criterion proved to be robust against ASR (and hu-
man transcription) errors that can be explained by typos and
other factors that do not affect understanding. For the fi-
nal investigation, we have augmented the main SLM with
a number of additional LMs specialized on address capture,
weather queries and other domains. From the past experience
we knew that this improves SER by 2% relative. However,
search-based evaluation showed almost no gain. Thus, while
domain specific grammars helped the ASR to produce more
accurate recognition texts, they did not significantly improve
users’ overall experience with the search application, a con-

clusion that helped us re-allocate resources to focus on truly
relevant ASR improvements.

5. DISCUSSION

We have presented a novel metric for search-based evaluation
of speech recognition systems in a voice search scenario. Un-
like traditional figures-of-merit, this metric is motivated by
the real user experience, and captures how this experience is
affected by various recognition errors. We have shown that
true impact of many recognition errors on the search qualityis
significantly smaller than what measured sentence error rates
might suggest, and that the new metric is more robust against
transcription errors and “forgivable” ASR errors such as alter-
native spellings or function words. Several caveats shouldbe
kept in mind while using this metric. First, quality of search
results is not the only factor that contributes to a good user
experience. Displaying correctly recognized text can alsobe
important as some users would not wait for the search en-
gine to return, if they do not like the recognized text. Second,
we currently lack an empirical confirmation that comparing
search results for cases where these results are not satisfac-
tory even for the reference texts is the right approach. We
plan on extending our investigation in both of these direc-
tions. Finally, since search engines evolve, it is possiblethat
the same recognition results will be judged differently over
time. Nonetheless, this methodology proved to be very ben-
eficial for our ASR. While not improving speech recognition
per se, it allowed us to focus on those directions of improve-
ment that are important for the end-user.
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